
Ticks of medical and veterinary importance

The need to control haemotophagous ixodid
ticks, which are external parasites of many animals
and humans, arises from their medical and
veterinary significance. After mosquitoes, ticks are
the second most well-known vectors of pathogenic
viruses, bacteria and protozoans [1–3]. Ticks –
obligate, blood-feeding ectoparasites of vertebrate
hosts – are important vectors of livestock and
human pathogens. While the tick feeds on blood,
many microbial pathogens (viruses, bacteria or
parasitic protozoans) enter the tissues and organs of
the host. They reproduce, disseminate and often
cause tick-borne diseases (TBD), some of which,
such as Lyme disease, anaplasmosis, ehrlichiosis,
babesiosis, tick-borne encephalitis, Crimean-Congo
haemorrhagic fever, Rocky Mountain spotted fever,
Colorado tick fever, tick typhus, tularemia,
heartwater, East Coast fever as well as Nairobi
sheep disease, threaten both global public health and
economic development worldwide [4]. For

example, cattle fever caused by Babesia spp., is
widespread in Africa, Australia, South and Central
America and the USA [5]. Other epizootics are
concerned with Rhipicephalus sanguineus and R.
(Boophilus) microplus, vectors of TBD of dogs and
cattle, ticks with the largest geographical
distribution, with a range that covers most of the
continents [6].

Another disease which has become the focus of
epidemiological research over the past few decades
is human borreliosis (Lyme disease, LB), which
appears to be one of the most widespread tick-borne
bacterial diseases [7]. While, in the north-eastern
U.S., the black-legged tick, Ixodes scapularis, also
known as the deer tick, seems to be the primary
vector of LB and other infectious diseases [8], in
Poland and the rest of Europe, these are believed to
be spread by the common tick, Ixodes ricinus
[6,9–15]. 

The wide occurrence of I. ricinus presents a
challenge for its control. It is the most widespread
species in all parts of Poland, and has been
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identified, for exumple, in the Lower Silesia
[16–19], Mazury [20,21] and Lublin districts
[22,23]. It lives in moist woodland where suitable
hosts, mainly rodents and game animals, are
available [6,9,24], although it is also found during
its seasonal activity in anthropogenic habitats such
as urban parks or allotments [25–28]. In the Polish
climatic zone, it spreads LB (caused by Borrelia
burgdorferi s.l.) and tick-borne encephalitis
(Flavivirus) among humans during the period spring
to late autumn: mostly April–June and
September–October. Cases of Q fewer (Coxiella
burnetii), anaplasmosis (Anaplasma phagocyto -
philum), tularemia (Francisella tularen sis) and
babesiosis (Babesia microti, B. divergens) have also
been recorded [21,29]. In Poland, and the rest of
Europe, I. ricinus has been confirmed to play an
epizootic role in such animal diseases as Q fever,
anaplasmosis, tularemia, as well as listeriosis and
Lyme boreliosis [6,24,30]. 

Tick control nowadays

The current worldwide control of tick
populations is mainly based on prevention, followed
by chemical acaricides [31,32]. Organochlorines,
the first synthetic organic insecticides, as well as
organophosphates, carbamate and pyrethroid
insecticides are synthetic compounds commonly
used as inexpensive acaricides, and can be effective
in reducing tick numbers in the environment
through treating such livestock as cattle or sheep.
Unfortunately, some of the widely used chemical
acaricides, such as carbaryl or chloropyrifos, may
be toxic to vertebrates, and growing widespread
arthropod-vector resistance threatens both public
health and the global livestock industries [33]. In
addition, the effects of less toxic chemical products
such as synthetic pyrethroids, which can be
effective in small doses, only become apparent after
a short time compared to other insecticidal
compounds.

All commercial synthetic insecticides are lethal
to many invertebrates, including non-target ones
including beneficial insects and arthropod predators
[4]. As chemical acaricides usually cause drug
resistance, new substances are constantly under
development. Most in vitro studies are carried out
away from the host. Despite excellent results, i.e.
high tick mortality, the full impact of
organochlorine products on non-target organisms
remains unknown. Although Oliveira et al. [34]

report that fipronil, a component of commercial dog
drops/collars, is very effective, the study  did not
include the impact of the acaricide on the dogs.
However, afoxolaner demonstrated high efficiency
against ticks (I. scapularis) and no effect on beagles
[35]. Hunter et al. [36] obtained similar results for
fipronil, amitraz and (S)-methoprene against R. san -
guineus, but their study, like many others, only
covered a short time period. Furthermore, as
demonstrated by Reck et al. [37] on R. microplus,
the development of resistance to many new
chemical substances made it impossible to
determine the effective time of action for each
chemical preparation.

Promising ways of tick biocontrol

In view of the many disadvantages of the
chemical tick control, new biological, environment-
friendly methods are being sought. In tick-abundant
areas, attempts are underway to identify natural
predators of ticks, including insectivorous birds
such as turkey and quail, or rodents. However, the
animals consume ticks while grooming, when they
are usually engorged after a blood meal. Besides,
the effectiveness of these natural predators is often
low and poorly predictable [4,32].

The search for new tick control strategies
focuses on such biological agents as crystalliferous
bacteria, bacilli, and fungi, which have been
successfully used to control mosquitoes [38,39].
These entomopathogenic microbes may play a
significant role in the environment-safe biocontrol
of ticks, as may plant extracts with acaricide
properties [40]. 

Initial attempts, made in the 20th century, relied
on the use of parasitic wasps, Ixodiphagus hookeri,
which laid eggs inside the body of the tick [32].
Subsequent studies in the United States mainly
relied on limiting the range of the wild hosts, mainly
rodents and game animals, by bio-acaricide
treatment: a cost-effective method which reduces
the risk of TBD for livestock and humans. In
addition, the method can be directed against many
species and prevent selection of drug-resistant ticks,
when acaricides are repeatedly used [41]. It was
used on the white-footed mouse, the main host of
I. sca pularis nymphs and the reservoir of B. bur -
gdor feri. The study was based on leaving cotton
scraps soaked with bio-acaricide in places
accessible to the mice, which used them for nest-
building [42]. The adult ticks on the other hand take
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deer as their hosts. In the U.S., reducing the
populations of white-tailed deer also rapidly
reduced the populations of I. scapularis [42].
Besides deer hunting, spraying the coat of the deer
with acaricides, for example near feeders, can also
be used. Acaricides can also be applied directly in
tick-abundant places. Soil or lawns can be sprayed
with biological acaricides, which is a good solution
for protection against ticks in household areas [43].

Entomopathogenic bacteria

Microbial preparations containing entomo -
pathogenic bacteria are very popular and commonly
used worldwide for the control of many pest and
vector organisms. For a few decades, bacteria such
as Bacillus thuringiensis (Bt) and B. sphericus
[44–46], with different target spectra, have been
used to control mosquitoes and simuliids. The
entomo pathogenic properties of subspecies and
strains of B. thuringiensis are highly variable. Most
conventional Bt products containing specific
pathotypes, mainly B. thuringiensis kurstaki or
thuringiensis (pathotype A), B. thuringiensis isra -
elensis (pathotype B), as well as B. thuringiensis te -
ne brionis and B. thuringiensis san diego (pathotype
C) can be toxic or pathogenic to specific groups of
insect larvae of the orders Lepidoptera, Diptera and
Coleoptera, respectively. Some Bt strains are
promising bacterial agents against some Protozoa,
Tre matoda, Nematoda, Hymenoptera and Acari
[45].

Bt formulations containing spores and crystal
toxic proteins (delta-endotoxin) are typically used in
insect control, and need to be consumed by the
arthropod to kill it. The formulations are most
efficient when applied to larvae or juveniles. In
contrast to herbivorous insects such as mosquito
larvae, which consume bacterial spores and crystals
with water, feeding ticks with B. thuringiensis is
problematic because they are hematophagous.
Attempts to feed hard ticks in the laboratory using
artificial membranes (e.g. silicone) to imitate the
skin of a host have been successful, and the feeding
ticks can be easily infected with the acaricide, but
the membrane thickness has to be matched to the
hypostome of the tested species, in this case I. rici -
nus [47]. Early studies on the toxicity of B. thu ri n -
giensis (pathotypes A and C), relying on injecting
bacteria into the bloodstream of rats, showed no
effect on the health of the rodents [48]. 

Further attempts have been made at the external

treatment of ticks with a suspension of B. thurin gie -
nsis kurstaki. Immersing R. microplus or I. scapu la -
ris in a solution of bacilli spores and crystals. or
spraying their eggs with it, resulted in a high
mortality rate of up to 79% after 20 days, and a
decreased number of hatched eggs [46,49]. It is
suggested that the mechanism of action of Bt delta-
endotoxins on ticks may be different from what it
was understood to be for a number of decades.

The pathogenicity to different arthropod taxa is
determined by two main classes of the crystalline
delta-endotoxins: the Cry (crystal) and Cyt (cytolic)
proteins. These toxins are produced and stored
inside the Bt cell as parasporal inclusions during the
stationary phase. In addition, some strains of B. thu -
rin giensis can also produce other useful virulent
factors, often with a narrow activity spectrum, such
as Vip proteins, P20 protein, Sip proteins and
chitinase. These toxins or enzymes produced during
the Bt vegetative growth stage can enhance the
invasiveness and penetration of bacteria into the
body of the pest or vector and increase the toxicity
of delta-endotoxins [45,50]. Many Bt strains,
including those used in commercial Bt products (Bt
subsp. kurstaki HD-1 or Bt subsp. israelensis HD-
567), have functional genes coding for other
virulence factors, known from B. cereus, such as
degrading enzymes (phospholipases C, shingo -
myelinase, proteinases, collagenase, nucleases),
cytotoxic proteins (enterotoxins, except the emeric
toxin, haemolysins), as well as cell surface proteins
(flagellin, S-layer proteins) and secondary meta bo -
lites. Several strains of Bt can produce a broad
spectrum of vegetative virulence factors, i.e. beta-
exotoxins which effectively control fly larvae,
bacteriocins, antibiotics (zwittermicin A) and
hydrolytic enzymes [45]. Despite the genetic and
phenotypic similarity of B. thuringiensis and B. ce -
re us, the Bt products seem to be safe for humans,
animals and the environment [51,52]. 

The mode of exposing the targets, including ticks
to the delta-endotoxins or a combination of spores
and delta-endotoxins, for example, oral admini -
stration or injection, or direct target sites,  can have
a significant effect on the pathogenic action of these
toxins. Habeeb and Abou El-Hag [53] demonstrated
that some of B. thuringiensis thuringensis toxins
could be lethal to the haemoplast cells of a hard tick,
Hyalomma dromedarii, and propose an alternative
method of tick control using Bt products. They
suggest that it is possible to transfer bacillus spores
from the environment into the tick haemocoel,
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where the bacteria germinates and extensively
reproduces, causing septicaemia and the death of the
host organism. Hassanain et al. [54] showed three
commercial Bt products containing spore/crystal
mixtures of B. thuringiensis kurstaki, B. thuringien -
sis israelensis or B. thuringiensis thuringiensis to
have a potential toxic effect against both soft and
hard ticks. Several environmental Bt strains (B. thu -
rin gien sis kurstaki ) were shown to be highly toxic to
an ixodicid resistant tick: R. microplus [46]. Similar
results indicating high mortality of adult R. mi cro plus
females in the presence of B. thu rin giensis kurstaki
strains were obtained by Martinez et al. [40].

Other candidates for tick biocontrol are the
symbiotic gram-negative gamma probacteria
Xenorhabdus spp. and Photorhabdus spp.
transmitted by two important nematode groups:
Steinernematidae and Heterorhabditidae, isolated
from the soil [55]. Their life cycle includes a free-
living stage in the soil (invasive larva), which is
capable of active search for a host, e.g. arthropod
pest or vector. After entering the host body through
natural integument orifices, the nematode releases
its symbiotic entomopathogenic bacteria. These
multiply rapidly, overcome the defensive system of
the host and produce various virulent substances,
including intracellular protein crystals and
antibiotics [56], causing the death of susceptible
hosts such as weevils – Hylobius excavatus, Liparus
glabrirostris or beetle larvae – Cetonia aurata after
24–48 h [57]. These bacteria are heat-sensitive.
Increasing the temperature to 80°C and maintaining
it for 15 minutes inhibits their activity [58]. The
virulence of individual nematodes and their bacteria
varies, depends on the tick species and development
stage [59–61]. Experiments with Ixodes ricinus [60]
showed a low mortality of up to 40%, to be
associated with three species: Steinernema carpo ca -
pse, S. feltiae and Hetero rhabditis bacteriophora;
most of the mortality was observed for the first
species, with unengorged females. The efficiency of
nematodes in the biological control of ticks is
highest under optimum conditions: high humidity,
20–30°C and little exposure to UV radiation. The
nematodes may lose their ability to infect ticks when
stored at high temperature or in liquid-containing
tanks for a long time [62].

Like fungi, invasive forms of nematodes can be
obtained from the soil, their natural habitat, using
insect bait methods. The only difference is that the
soil moisture should be higher than in the fungi
isolation [63].

Entomopathogenic fungi

Fungi are the most commonly used and effective
agents in invertebrate pathology, mainly in the
control of mites and insects as forestry pests [64].
Many different species of pathogenic fungi are used
in pest and vector biocontrol: Be au ve ria bas sia na,
B. mi cro plus, Me tar hi zium ani so pliae, M. fla vo vi ri -
de, Isa ria fu mo so ro sea (first de scri bed as Pa eci lo -
my ces fu mo ro seus), I. fa ri no se (first de scri bed as
Pa eci lo my ces fa ri no sus), Le ca ni cil lium sp., Sim pli -
cil lium la mel li co la, Ver ti cil lium sp., Asper gil lus pa -
ra si ti cus and A. fla vus. The most important
candidate species for tick control are B. bassiana
and M. anisopliae [4,40]. They are commonly found
in the environment, staying in saprogenesis for a
very long time [65]. Under natural conditions,
spores which have come into contact with the tick
cuticle sprout and insert their invasive threads into
the body of the host. The fungus is capable of
producing cuticle-degrading enzymes such as
proteases and esterases, produced in the first 24
hours, as well as chitinases and lipases 4–5 days
after infection [66]. The hyphae then start to
multiply, resulting in the death of the host. The
death of the host usually takes place after the
exhaustion of nutrient reserves, but some fungi are
able to produce toxic metabolites which accelerate
death.

Entomopathogenic fungi can be isolated in a few
ways: directly from ticks [60], from soil, mulch or
plants using selective media [67] or using insect bait
method [68].

Acaropathogenic fungi infect ticks naturally,
however, live ticks are their hosts for a short period.
As the fungi are usually found in dead ticks [60,63],
it is recommended to collect dead arachnids from
the area. Typically, moisture and temperature
conditions do not allow the fungus to overgrow the
host cuticle and produce spores. The surface of the
collected host should be disinfected [69] with
sodium hypochlorite (NaClO) and 70% ethanol.
Ticks prepared in this way are placed in Petri dishes
at high humidity and room temperature to allow
fungal growth in the cuticle. Spores can be collected
in a few days.

Attempts at isolating microorganisms from the
soil, mulch or plants may yield a wide variety of
fungi, bacteria and actinomycetes. To avoid
contamination by non-entomopathogenic micro -
organisms, selective media should be used [70].
Antibiotics such as tetracycline, chloram phenicol or
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streptomycin can be applied for bacterial inhibition
[63]. Gram-positive bacteria can be inhibited by
applying crystal violet, while non-pathogenic fungi
can be eliminated by adding dodine, or cyclo -
hexamide to the media [63,67,71]. Adding benomyl
can inhibit growth of B. bassiana and M. anisopliae
[67]. Collected samples (e.g. soil) or a diluted (soil)
solution should be put directly on the media.
Incubation should be carried out in the dark, at room
temperature, for 5–7 days [71]. Each Petri dish
should contain 5–15 g of soil: using portions which
are too small (1 g) may result in no fungi being
present in the sample, as the distribution of the fungi
in their natural habitat is usually clustered [63]. 

Meyling [63] describe a very sensitive detection
method using 5–10 live larvae of Gal le ria mel lo nel -
la, Acan tho ci nus aede ilis, Tri bo lium de struc tor or
Te ne brio mo li tor. They are placed in soil-filled
containers at room temperature [69]. The first larvae
usually die after a few days [71]. Studies of this kind
should be closely monitored, because the mycelium
growth on the dead larvae produces spores which
will re-infect the soil. Moreover, high levels of soil
moisture cause infection by nematodes, not fungi
[63]. Dead larvae should be collected and treated as
described by the first of the described methods of
isolating fungi. When the mycelium overgrows the
cadaver, the larva should be only washed in distilled
water (not disinfected).

Most of the studies were performed on adult
ticks. Questing ticks were collected with flagging
method, while engorged ones were collected from
cattle pastures. Collecting engorged females made it
possible to test the effect of fungal strains on eggs,
measuring both the rate of egg production, or the
number of hatched larvae, and larvae [72,73].
Testing the fungal preparations on the larvae
requires an excellent knowledge of the life cycle of
the tick species. It is important to capture the
moment when the female begins to lay eggs, as well
as the exact time of hatching of the larvae, at which
point, it is important to maintain adequate relative
humidity (>80%) to avoid the eggs drying. Besides,
larvae derived from the same female constitute good
material for this type of research, due to their
homogeneity and the large number of individuals,
which can be as many as a few thousand, depending
on the species. However, their small size and fast
movement may cause difficulty during the tests.
Biocontrol of ticks feeding on the host was also
attempted [74]. However, the efficiency of the
fungus species used (Metarhizium brunneum) was

low; it was most effective against the larvae which
failed to transform into nymphs (30.1%) despite the
presence of the host. Spraying with the substance
had a significant effect on the quantity of consumed
blood, resulting in a shorter feeding time,  at each
developmental stage of the tick. No death of feeding
females was observed, however, compared to the
control groups, the number of harvested eggs was
slightly lower.

Overall, the greatest efficiency is observed when
fungi were applied to the engorged females, with the
egg production rate being much lower than in the
control groups. Also the number of unhatched eggs
was high [75]. The differences in the mortality
between unengorged and engorged ticks in every
developmental stage was found to depend on the
species of pathogen and tick [60,76–78].
Furthermore, individual isolates of the same species
can show different virulence. Fernandes [65] notes
that the most virulent strain, the only isolate with
synnemata growth, was the one isolated from a
human infection. 

Most bioassays used I. scapularis, a vector tick
of LB from the Northern Hemisphere. Both in vitro
and in vivo studies involve spraying the land with
solutions containing fungal conidia [43]. Arachnids
were collected by the flagging method from an area
where the collection was made the previous year
without spraying. A significant reduction in the
population of I. scapularis was noted in the studied
areas (74.5–90%).

Only few studies deal with biological control of
the common tick, I. ricinus, which is the main TBD
vector in Poland and Central Europe [60,79]. The
studies included all the life stages of the tick, and
the following species of fungi: B. bas sia na, M. ani -
so pliae and Pa eci lo my ces fu mo so ro seus. M. ani so -
pliae, isolated from lepidopteran species, was found
to be the most effective strain. The greatest
mortality (80%) was observed among the
unengorged nymphs. The absence of effects
observed in the case of engorged nymphs and larvae
is accounted for by the changes in the epidermis
which impede penetration of substances through the
cuticle. B. bassiana and P. fumosoroseus were
slightly less effective. However, different strains of
the same species acted with varying degrees of
effectiveness.

It is important in in vitro experiments that the
ticks should be decontaminated in 1% sodium
hypochlorite solution [73], physiological saline or
distilled water with 0.1% Tween 80 [72] before
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using the spores/conidial suspension. The most
common way to infect ticks with fungal pathogens
is to immerse them in a spore/conidial suspension
for 1–3 minutes, dry them on sterile gauze and place
them on Petri dishes at room temperature and
relative humidity >80%. It should be noted that
excessive temperature and insufficient relative
humidity have an adverse impact on the survival of
hungry ticks [24]. It is therefore necessary to
determine the optimal conditions for both ticks and
fungi.

To infect ticks with fungi, specimens are placed
on a leaf or gauze soaked with conidial or
blastospore suspension [60,78], or immersed in the
solution for a few minutes, then placed on Petri
dishes [75], and incubated at room temperature and
80–100% relative humidity. A conidial suspension
based on oil is much more effective than that based
on distilled water, because oil has better affinity to
the lipophilic and hydrophobic tick cuticle [78].

Preliminary identification of fungi is based on
macroscopic observations, noting the colour, shape,
size and texture of the colony. Moreover, in
microscopic observations, the shape of the conidia
is important. However, because polymorphism is
common even within populations, the ultimate
identification of the fungal species can be obtained
through polymerase chain reaction (PCR) [65].

Tick biocontrol in practice

Research continues in the United States, which
first initiated biocontrol of tick populations
[43,69,80], and other countries, such as Mexico,
Brazil or Australia, follow this trend [65,72,81]. In
Europe, only a few experiments have been
performed on biological acaricides, tested in vitro
on I. ricinus [60,79].

Until now, in Poland, tick control is mainly
based on prevention and the use of chemical
acaricides for personal or pet protection (e.g. Fiprex,
Autan plus). None of the acaricides currently in use
is specific to ticks. No fungal or bacterial strains
have been isolated directly from I. ricinus which
could be candidates for its effective biocontrol.
Moreover, commercially available preparations
such as Boverin, Botani Gard, Es Naturalis O,
Metabeave Beauveria, Met 52 Bio-insecticide or
Biosar Bio Insecticides used for control of
agricultural pests, could also be used in this case.
However, although the ones which have already
been tested are characterised by high efficiency, as

demonstrated in previous studies, many other
aspects remain to be researched.
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