
Introduction

Hookworms are very important blood sucking
nematode parasites of man and domestic animals.
Humans are permissive hosts for three hookworm
species: Necator americanus, Ancylostoma duode−
nale, and Ancylostoma ceylanicum [1].
Ancylostomosis together with other soil transmitted
parasitic diseases is the major health problem in the
developing countries [2]. It causes blood loss and
iron−deficiency anemia of approximately 730 mil−
lions of peoples [3]. Infections with hookworms are
very common in tropical regions of the earth [3, 4].
The work on construction of vaccine against hook−
worm infections has being continued for many
years, but without success so far. Research is
focused on a number of bioactive molecules pro−
duced by larval and adult stages of the parasite,
which are associated with larval skin penetration,
intestinal tissue invasion, immune evasion, diges−
tion of haemoglobin and/or other macromolecular
substrates. McKerrow [5] suggested that cysteine
proteinases could be used as the most promising

vaccine candidates against hookworm infections.
These enzymes play a very important role in the
host−parasite interaction. They are involved in para−
site feeding, tissue migration, and neutralization of
host immunological response. Kofta et al. [6]
obtained 74–100% reduction in the fluke burden
when Fasciola hepatica cysteine proteinase cDNA
was used to vaccinate rats against fasciolosis. 

The aim of this paper is to present a novel bio−
informatic tool for evaluation of biological role and
3D structure of potential vaccine antigens of
helminth parasites.

Material and methods

ACEY−1 cDNA sequence described by
Mieszczanek et al. [7] was translated to aminoacid
sequence using Translate program (http://www.
expasy.ch/tools/dna.html).

Cysteine proteinase aminoacid sequence was
used to obtain the potential tertiary structure by
Automatic Program 3D−JIGSAW (http://www
bmm.icnet.uk/servers/3djigsaw/) [8–10]. This struc−
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ture was compared to proteins with solved 3D struc−
ture deposited in the MMDB/PDB database using
the Vast program (http://www.ncbi.nlm.nih.gov/
Structure/VAST/vastsearch.html).

Results

Automatic Program 3D−JIGSAW designed a ter−
tiary structure of ACEY−1 in *.pdb format (protein
data bank format) (Fig. 1). The comparison of 3D
structure of ACEY−1 to known proteins revealed
homology to Streptococcus cysteine proteinase
which is known to possess IgG endopeptidase activ−
ity [11] and to other proteins (Table 1; Figs. 2, 3).

Discussion 

The exact mechanisms of hookworm infection
and survival within the mammalian host remain
poorly understood. However, recent identification
of a number of bioactive molecules released by lar−
val and adult stages of the parasite have shed light
on a variety of potential hookworm evolutionary
strategies. Acquiring information about molecular
structure and biological functions of parasite's anti−
gens play a key role in research focused on the
designing vaccines against parasites. Using compu−
tational analysis (two programs: Automatic
Program 3D−JIGSAW and Vast) we obtained poten−
tial tertiary structure of ACEY−1 and found it simi−
lar to proteins which biological functions are
already known. Especially two of them are very
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Fig.1. Potential structure of ACEY−1 constructed by
Automatic Program 3D−JIGSAW. Green− alpha helix
structure, yellow− beta strand structure, blue− coil struc−
ture 

Fig. 2. A — 3D aligment of overlapping domains of potnetial teritary structure of ACEY−1 and overlapping domains
of similar proteins found in MMDB/PDB database. Blue colour− similar overlapping residues, red− identical overlap−
ping residues, orange− disulfide bonds, grey− other aminoacids. B — 3D alignment of overlapping residues of poten−
tial structure of ACEY−1 and similar proteins found in MMDB/PDB database. Blue colour — similar residues, red−
identical residues, orange− disulfide bonds, other− ligands complexed with analyzed proteins



Cysteine proteinase structure 279

Fig. 3. Aligment of aminoacid sequence of ACEY−1 and proteins found in MMDB/PDB database constructed by
VAST program. Similar overlapping residues are grouped in frames. Identical residues are marked in black There are
also residues of high similarity in gray marked by the author



important from our point of view: Der p 1 and Mac−
1. Der p 1 is the 25 kDa major allergen with cysteine
protease activity from Dermatophagoides
pteronyssinus [12]. This similarity could suggest
that ACEY−1 is not too good vaccine candidate.
However, Mac−1 protein is a Streptococcus secreted
cysteine protease with IgG endopeptidase activity. It
blocks phagocytosis and inhibits the production of
reactive oxygen species [18]. Numerous publica−
tions showed that cysteine proteases may be
involved in tissue penetration of the parasite, in its
feeding as well as in defence against effector mech−
anisms of the host's immune response. Berasain et
al. [19] described specific cleavage sites on human
IgG subclasses by cruzipain, the major cysteine pro−
teinase from Trypanosoma cruzi. Also Kumar and
Pritchard [20] have shown that extrectory/secretory
cysteine proteases of Necator americanus cleave
human IgG. Papers mentioned above and present
computational analysis of ACEY−1 aminoacid
sequences allow us to suggest that this enzyme may
be involved in cleaving of host's IgG antibodies and
therefore may be a promising antigen candidate for
vaccination against hookworm infections. Kofta and
co−workers [6] observed 100% (males) and 74%
(females) reduction of worm burdens in Sprague−
Dawley rats immunized with cDNA encoding one
of Fasciola hepatica cysteine proteinases and then
challenged with F. hepatica metacercariae. 
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