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ABSTRACT. The use of toll-like receptor agonists in immunotherapy is a new approach in the prevention of
immunosuppression during fatal Leishmania parasite infection. The objective of such immunotherapy is to activate
specific cell-mediated immune responses, macrophage activation and antigen-responsive inflammation, to kill
intracellular amastigotes. Toll-like receptor agonist-based treatment in immunocompetent hosts can be effective either
by selective use of the agonists alone or in combination with the anti-leishmanial drug stibanate. Recent investigations
suggest that toll-like receptor signal pathways constitute a possible new mode of anti-leishmanial treatment. This article
describes the prospect of toll-like receptor – mediated signal pathways in the immunotherapy of cutaneous and visceral
leishmaniosis, as well as post kala-azar dermal leishmaniosis (PKADL), a skin-sequel of visceral infection. Suitable
synthetic agonists need to be developed for toll-like receptors to overcome immunosuppression.
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1. Toll-like receptors in microbial infection

Toll-like receptors (TLRs) are the innate immune
responders of mammals. The unique feature of
TLRs is that, these versatile groups of receptor
proteins respond to selective microbial Pathogen-
Associated Molecular Patterns (PAMPs) [1–3]. The
sequence and molecular structure of the ligands or
agonists determine TLR activation and the
subsequent signal pathways in the cells of different
tissues. TLR expression has been found in myeloid
and lymphoid progenitor derived cells, as well as
natural killer (NK) cells. Their presence indicates
the importance of TLR-signals in maintaining a
bridge between innate and adaptive immune
systems, although the mechanisms of action are not
yet known. In addition, TLR-signal pathways play a
significant role in brain development [4–7].

The TLRs in mammals are analogous to fruit fly
Drosophila Toll protein, which confers antifungal

properties to the fly [8,9]. The first discovered TLR
was TLR1, attached to the interleukin 1 receptor
(IL1R) [10]. The TLRs were divided into two
groups: (A) intracellular TLRs, like TLR 3, 6, 9, 7,
8 and (B) extracellular TLRs, such as TLR 1, 2, 4, 5
[10,11]. The uniqueness of these TLR responses
critically depend on ligand specificity, receptor-
ligand interaction, and the type of cell signal events
that eventually induce downstream activation of
transcriptional regulators to promote inflammatory
responses (Fig. 1). Though the TLRs are expressed
in almost all mammalian cells, their mode of action
varies depending on the cell and tissue.

The TLR-mediated immune responses involve
upstream activation of multiple signal cascades,
which lead to the induction of downstream nuclear
factor κB (NF-κB) and AP-1 activation [3,12,13].

The structure of TLRs includes Leucin-rich
repeat sequences. These sequences recognize
molecular pattern specific ligands and trans -



membrane TIR (Toll/Interleukin 1 receptor 1)
domain. The TIR domain is linked with the adaptor
molecules TIRAP, MyD88, IRAK4 and IRAK 1/2
[2,13,14]. Inhibition of MyD88 activation
remarkably reduces TLR-mediated inflammation.
Interestingly, intracellular TLR3-mediated cell
signal events have been found to interact with TRIF,
but not MyD88, in the upstream signaling pathway
linking IRF transcription regulators to produce
antiviral type 1 interferon [10,13]. The downstream
of TLR3-mediated signal event is partially related
with MyD88 dependent TLR4 signal pathway
connecting activation signals for NF-κB as well as
IRF3. The TLR3 agonist polyIpolyC (pIpC) induces
mRNA expression of inducible nitric oxide synthase
(iNOS) in macrophages [15,16]. The observations
suggest that pIpC has the ability to cross-signal
through TRIF and MyD88 which, in turn, activates
the IRF-mediated signal pathway, or the down -
stream cytoplasmic MAPK pathway, to activate NF-
κB or AP1. The screening of agonists for TLR2 and
TLR3, is thus an important part of determining a
successful antimicrobial defense approach.

Recent advancements also highlight the
importance of the TLR signal in inducing the
formation of noncoding microRNA (miR-155) [17],

which is TLR inducible and in turn modifies the
function of MyD88. Apart from an inflammatory
response, induction of miRNA provides an
important modulatory mechanism in TLR function.

1.1. Impact of toll-like receptors in cutaneous

leishmaniosis

Cutaneous leishmaniosis (CL) is manifested as
nodular skin lesions in patients. The disease is
endemic in Central and South America, Africa, the
Middle East and Mediterranean regions [18–20]. It
is caused by the blood-borne parasites Leishmania
tropica and Leishmania major as well as a wide
range of other species and subspecies. Although the
mechanism of localized immune responses to CL-
causing is not yet clear, a number of studies suggest
that, the parasite and nature of cell-mediated
immune response against the CL parasite antigen in
skin nodular lesions has a distinct character, which
vary between muco-cutaneous (MCL) or diffuse-
cutaneous (DCL) leishmaniosis. The classic
cutaneous leishmaniosis is self-healing and is
associated with strong T cell-mediated immune
responses following infection [21,22]. The
persistence of Leishmania infection in CL depends

Fig. 1. Signal events of extracellular TLR 2, 4, 5, 6 and intracellular TLR 3, 7, 8, 9. The extracellular and
intracellular toll-like receptors (TLRs) induce signals through activation of MyD88 adaptor protein and intermediate
MAL/TIRAP, TRAF, IRAK signal adaptor protein molecules. The TLR3 signal pathway includes TRIF. The TLR-
mediated signals differentially induce downstream activation of NF-κB, AP1, ER-α and IRF to promote gene
expressions. The immunotherapy of cutaneous and visceral leishmaniosis depends on selective activation of TLR-
signals for regulation of tissue specific immune responses and antimicrobial defense.
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on ability of the Leishmania parasite to survive
within macrophages and skin-tissue derived
dendritic cells (Langerhan’s cells). The self-healing
infection persists for long periods in the skin as
nodular lesions.

Recent investigations suggest that TLR2 and
TLR4 agonists play a protective role in cutaneous
leishmaniosis. A number of studies on American
Cutaneous Leishmaniosis (ACL) indicate that
extracellular TLR2 agonist plays a protective role
under active disease conditions [23–25]. Cezario et
al. [26], as well as other studies [27,28],
demonstrated an increase in mRNA expression of
TLR 2 and 4, interferon gamma (IFN-γ), tumor
necrosis factor alpha (TNF-α) to be associated with
parasite infection. These results indicate that,
selective agonist-mediated TLR 2, 4 activation is a
potential strategy for the development of anti-
leishmanial vaccine. Recently, Raman et al.
demonstrated a synergistic application of toll-like
receptor 4 and 9 agonists with leishmanial antigen in

effective anti-leishmanial immune responses [29].
In the search for possible therapeutic interventions

with minimal side effects, the discovery of
combination therapy of stibanate with TLR3
synthetic agonist polyIpolyC is seen as a vital step
towards effective immunotherapy [30]. Likewise, the
use of the bacterial membrane component muramyl
dipeptide (MDP) as an immunoadjuvant is another
important step in the development of more effective
immunotherapy in animal models [31]. The
activation of natural killer T cells (T cytotoxic cells)
through a TLR-mediated signal is a classic stimulus
to induce the killing of intracellular parasite loaded
macrophages, thereby demonstrating the importance
of TLR agonists in prevention of leishmaniosis [32].
In the context of searching TLR agonists the TLR 7/8
ligand, imidazoquinoline compound imiquimod or
resiquimod, has been recognized as a potential anti -
microbial agent. Imiquimod is approved by the FDA
for topical treatment of genital warts [33,34] as well
as in the treatment of leishmaniosis. Selective use of

Fig. 2. Multifunctional immune responses following infection of leishmania parasites.  Intracellular growth and
multiplication of Leishmania parasites develop alteration in functional immune responses in immunocompetent hosts.
There are different steps in antigen specific immune responses, alteration in any or more than one stage generate
dysfunction in protective immune response to prevent infection. 1. Dysfunction in antigen presentation by antigen
presenting cells; 2. Presence of adherent cells having suppressor cell property; 3. T-helper cell (TH)-dependent immune
responses include antigen specific and generalized immunosuppression); 4. Alteration in activation of TH1 cells; 5.
Antigen specific TH1 cell responses; 6. Antigen specific TH2 cell responses; and 7. T dependent as well as independent
B cell activation. The polyclonal B cell activation and T cell-mediated peripheral immune responses are found during
progression of leishmaniosis.
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TLR agonists exerts an anti-leishmanial effect with
public health benefits. In cutaneous leishmaniosis,
the topical use of TLR agonists is a noninvasive
choice of immunotherapy.

1.2. Impact of toll-like receptors in visceral
leishmaniosis

Unlike cutaneous leishmaniosis, visceral
leishmaniosis (VL) is a fatal progressive disease
caused by the Phlebotominae sandfly vector.
Immunosuppression of the Leishmania specific
antigen is a major event during progression of the
disease [35–38].

Leishmania antigen-specific lymphoproliferative
responses have been demonstrated by many
investigators suggesting intrinsic impairment of T
helper type 1 cell activation during progression of
illness. Leishmania donovani infection eventually
results in two different patterns of immune
response: antigen specific immune suppression and
antigen unspecific generalized immunosuppression.
A longitudinal study using a hamster model
indicated an overall decrease in lymphoproliferative
responses with progressive L. donovani infection
[38–41]. Adherent immune cells of macrophage
origin have been shown to impair cell-mediated
immune responses: their removal partially restored
the lymphoproliferative responses [39].

Hence, the mechanistic possibilities for
immunosuppression in susceptible hosts include (1)
altered antigen presentation by APCs (antigen
presenting cells) as well as (2) the inability of T
helper cells to commit a TH1 or TH17 type response
in the presence of the Leishmania antigen (Fig. 2).
The findings from a hamster model allow the
diversity of APCs to be determined, and for an
effective population of antigen-specific T cells to be
generated.

The importance of toll-like receptors is a
challenging aspect in developing vaccinations for
the management of visceral leishmaniosis (VL).
Several investigators [42,43] have suggested that
the induction of IL1, TNF-α, and IFN-γ reduces
intracellular Leishmania donovani accumulation in
monocytes in vitro. Kar et al. [44] suggested that
cystatin plays a role in the prevention of visceral
leishmaniosis via induction of NF-κB mediated pro-
inflammatory responses downstream of the TLR/
MyD88 signaling pathway.

1.3. Impact of TLRs on post-kala-azar dermal

leishmaniosis (PKADL)

Post-kala-azar dermal leishmaniosis (PKADL) is
a sequel of visceral leishmaniosis (VL) [45–47].
The disease is associated with nodular lesions on
skin of VL patients develop due to improper drug
treatment and the development of dysfunctional
host immune responses against the Leishmania
donovani parasite. The current medications based
on stibanate (Pentostam) have limitations in curing
Leishmania infection. Several reports [48-49]
suggest the drug-resistant variety of Leishmania
donovani generates skin nodular lesions in the
immunocompetent hosts. PKADL is an example of
a condition which demonstrates reversible immune
responses to Leishmania antigen(s). However, the
impact of TLRs on PKADL treatment is still
unknown. Immunotherapy using selective TLR
agonists would be a better choice for the treatment
of the nodular lesions and the activation of localized
immune responses in PKADL patients.

2. Prospect of TLR agonists as immuno -

therapeutic agents for leishmaniosis

In spite of extensive research, the
immunotherapeutic approach and vaccination
strategy to prevent cutaneous and visceral
leishmaniosis is still under investigation. The areas
for improvement in the management of
leishmaniosis concern vector biology, variation in
parasite antigens, and the genetic susceptibility of
hosts towards Leishmania infection [50,51].
However, the correlation between geographical
location and host-parasite interaction pattern is still
unclear. The Leishmania parasites grow and
multiply intracellularly within the macrophage
[52,53], and by virtue of this location, the parasites
escape direct interaction with the drug. At the same
time, dysfunctions in antigen presentation by
amastigote-infected macrophages and professional
antigen presenting cells impair the T helper type 1-
mediated inflammatory response, which is required
to destroy parasites. Since there is still no effective
immunotherapy and sodium stibogluconate or
stibanate, is still used as a drug of choice for
leishmaniosis [54–56].

Recent investigations concerning leishmaniosis
therapy indicate a need to develop noninvasive
treatment procedure in skin lesions of cutaneous
forms of Leishmania infection. Thus, a strategy to
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produce effective topical medicine has acquired
profound importance. The laboratory based
investigations indicate that resiquimod alone or
liposomal resiquimod (imidazoquinoline) may be a
significant component of the treatment of visceral
leishmaniosis [57,58]. The prospect of TLR agonist-
based immunotherapy hence offers a promise in the
treatment of leishmaniosis.

Conclusions

The successful treatment of leishmaniosis in
various geographically-distinct areas depends on the
susceptibility of infected populations towards
parasite infection. While studying the mechanism of
antigen specificity during Leishmania parasite
infection, tests on a susceptible golden hamster
model revealed that an increase in parasite load
gradually decreases lymphocyte proliferation.
However, such suppression of lymphocyte
proliferation can be reversed, though partially, upon
removal of adherent suppressor cell population from
the spleen cells in vitro [39]. Hence, we propose that
the down-regulation of adherent suppressor cell
function using TLR-signal based immunotherapy is

a worthwhile approach for overcoming
immunosuppression and attaining a leishmaniacidal
immune response.

The toll-like receptor agonists induce
inflammatory responses through activation of NF-
κBp65 and thereby decrease adherent cell
populations which cause immunosuppression (Fig.
3). This proposed immunotherapy can prevent both
antigen-specific and independent generalized
immunosuppression in a susceptible population in
endemic zones. Future research is necessary to
screen potent TLR agonists for immunotherapy of
Leishmania infection.
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Fig. 3. Mode of action of toll-like receptor agonists in reversal of Leishmania parasite-induced

immunosuppression. Mechanism of toll-like receptor agonists in reversal of immunosuppression via down regulation
of adherent suppressor cells causing antigen specific and independent generalized immunosuppression during
progression of disease. The increase in parasitemia gradually shifts antigen specific  suppression of lymphoproliferative
response to generalized antigen independent response in  susceptible population. Removal of adherent cells restores
functional immune response. The “+” sign indicates increase while the “–” sign indicates decrease in response.
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