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ABSTRACT. Dysfunction of T-helper 1 mediated immune responses is a hallmark of the progression of visceral
leishmaniosis (VL). Several factors such as altered antigen presentation, and abnormalities in MHC/HLA, antigen
processing, and T cell receptor recognition regulate the onset of immunosuppression. Recent investigations on VL
patients suggest that susceptibility to visceral leishmaniosis is genetically determined and varies between populations in
different geographical locations. Emerging evidence also indicates the importance of the role played by myeloid derived
suppressor cells in progressive VL. This study provides a mechanistic view of means to target the signaling mechanisms
of immunosuppression to determine potential therapeutic interventions.
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Introduction

Immunosuppression is a common reason for a
fatal outcome in visceral leishmaniosis (VL). The
mechanism of onset is diverse, and its severity
during disease progression depends on the
genetically determined susceptibility of a particular
population, which can vary according to geo gra -
phical location. 

The hemoflagellate kinetoplastidae parasite
Leishmania donovani is the causative organism of
VL. During a blood meal, the female Phlebotomus
sandfly introduces flagellated promastigotes into the
bloodstream. These motile promastigotes are
engulfed by skin macrophages, dendritic cells and
converted to aflagellated amastigotes, which grow
in the phagolysosomal vacuole in an intracellular
manner [1–5]. The patients die if left untreated. 

Several leishmanial antigens including protease
glycoprotein 63 (gp63), 50–55 kDa proteins, 20–28
kDa proteins, 30–45 kDa proteins have been
identified in both patient sera and animal models
[6–8]. The amastigote-derived virulent A2 protein

has gained importance in the aspect of diagnosis and
found to be immunogenic in both murine models
and patients [9,10].

Preventive strategy of visceral leishmaniosis

The preventive strategy of visceral leishmaniosis
in tropical regions is based on four programs: (a)
firstly, vector control [11], (b) secondly, the
development of drugs  as suitable alternative of
stibanate [12], (c) thirdly, immunotherapy [13–16]
and (d) fourthly, choice of proper vaccination
strategy [17,18]. 

Particular attention is being paid to the molecular
determinants of host-parasite interactions during the
entry, engulfment, and propagation of parasites in
infected individuals. An effective blockade in any
one of the steps can prevent parasite infection.
Observations of canine VL suggest that a
vaccination approach using various leishmanial and
DNA-derived synthetic epitope antigens may be a
promising way to prevent Leishmania donovani
infection [19,20]. 



A new approach to developing a treatment
strategy to overcome anergic immune responses is
through the successful implementation of
immunotherapy. The discovery of novel compounds
with both, immunostimulatory and leishmaniacidal
properties with minimum or no side effects, is
necessary for drug development. Clinical
vaccination trials have been performed by various
laboratories with variable degrees of success in
preventing Leishmania infection [21–24]. The
following sections discuss the mechanisms of
immunosuppression which take place during
Leishmania donovani infection in human animal
models from the perspective of effective prevention
of fatality in visceral leishmaniosis.

Effect of parasite load on dysfunction of

immune response

Leishmania donovani infection in hosts depends
on the successful entry of the parasite into
macrophages [4,5,25]. During a sandfly bite,
flagellated promastigotes enter macrophages via
receptor-mediated endocytosis and the amastigotes
multiply in the phagolysosome compartment of the
macrophages [25,26]. The mannose, fucose receptor
binding protein and CR3 complement receptor play
active role in the internalization of the proma -
stigotes [27].  The CR3 has been found to bind to
the ArgGlyAsp tripeptide sequence of the gp63
surface protease of Leishmania promastigotes [28].
Inhibition of the function of these receptors in
murine cell culture was found to prevent
internalization of promastigotes in the macrophage.
Hence, one possibility for preventing Leishmania
infection to develop a synthetic vaccine and/or
therapy with siRNA or microRNA construct
intended for selective knockdown of CR3, mannose
receptor binding protein. Alternatively, a live
attenuated and avirulent Leishmania parasite may
be developed for successful immunization purposes.
Gamma-irradiated attenuated promastigotes have
been found to potentially induce efficient immune
responses and reduce parasite burden in a golden
hamster model of Leishmania donovani infection
(S. Dasgupta, A.C. Ghose, unpublished obser -
vation). The third approach is to generate bioengi -
neered promastigotes with modified gp63. 

Leishmania donovani promastigote and
amastigote surface glycoprotein gp63 gene has been
isolated and cloned for characterization [29–31].
The developmental importance of Leishmania

surface protease gp63 mRNA expression patterns
and glycolipids has been suggested by different
investigators in promastigotes and amastigotes
[32,33]. During infection, gp63 was found to
interact with fibronectin-like receptors [34]. The
gp63 glycoprotein deserves special consideration as
it prevents AP1 and NF-κB activation [35,36]. The
studies thus underline the importance of this
glycoprotein in designing a preventive strategy.

Further evidence suggests that L donovani
infection induces increased production of ceramide
in macrophages [36,37]. Knapp and English [38]
reported that, the accumulation of ceramide is
involved in expression of inducible nitric oxide
synthase (iNOS) and tumor necrosis factor in
murine macrophages (RAW 264.7) following
stimulation with prototype inflammatory agent
lipopo ly saccharide (LPS) in vitro. Recent research
indicates that amastigote protein A2 may be
important in the prevention of the multiplication and
spread of intracellular amastigotes in vivo:
immunization with A2 protein and/or inhibition of
the expression of A2 protein has been found to
restrict internalization of the parasites. The A2
protein thus has promise to take part in preparation
of vaccine for L. donovani infection [9,10]. 

Dysfunctional antigen presentation 

The inability of antigen presenting cells to process
the Leishmania antigen, and the presen tation of the
processed antigen with HLA/MHCII to TCR
generates nonfunctional T cell response during
progressive illness [4,39]. Leishmania donovani
infection is associated with a loss of antigen-specific
cell-mediated immunity (CMI), which has been
demonstrated as a failure to respond to leishmanial
crude soluble antigen by peripheral blood
mononuclear cells in lymphocyte proli feration
experiments [40,41]. The anergy of CMI response in
immunocompetent hosts during progression of
disease is specific to the Leishmania antigen
[40,42–44] and is of a generalized nature [45–47].  

Suppression of the TH1-mediated immune
response has been found in the altered cytokine
milieu. The progression of visceral leishmaniosis is
associated with a decrease in IFN-γ expression and
increased IL10 expression [48,49]. A decrease in
delayed type hypersensitivity reaction (DTH) in
response to intradermal injection of Leishmania
antigen indicates a stage of anergy to Leishmania
antigen. However, such DTH reaction is positive
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when PPD antigen is used under similar condition to
VL patients. The nature of immune response has a
correlation ship with degree of parasitemia and shows
significantly suppressed under severe parasite load in
patients during progression of illness. Thus, the
observed phenomena suggest that, an effect of
susceptibility pattern shifts Leishmania antigen
specific immune responses to generalized antigen
independent immunosuppression [42,43,50].

In laboratory, experimentally-induced intrace -
llular parasitemia via intravenous inoculation has
been found to depend on the H-2a and H-2b

phenotype in inbred mouse model. The Balb/c mice
are  genetically susceptible to L. donovani infection.
The C57BL/6, C57BL/10, DBA mice are resistant
to Leishmania donovani infection [51,52]. The
inbred mice with defined genetic backgrounds are
valuable tools in explaining the mechanism of
expression of genetic determinants controlling
susceptibility.  Golden hamster is a susceptible
rodent model which mimics the progression of L.
donovani infection in susceptible humans [53,54]. 

In humans, susceptibility-determining genes
include Kaza1 (ID 387582), HLA DRB1 (ID 3123),
HLA-DQA1 (ID 3117), IL 10 (ID 3586), CRP (ID
1401 C-reactive protein) and the Fork head box
transcriptional regulator (FOXP3) (ID: 50943).
Dominant expression of these genes alters antigen
presentation by macrophages and APCs, and shifts
the balance from inflammatory TH1 response to
TH2 responses. Cluster of genes and regulator
proteins are the determinants of the severity of
disease and the nature of immune suppression
during infection [55–57]. 

The experimental evidences in an in vitro
hamster model of L. donovani infection suggest
that,  adherent macrophage-like cells play a critical
role in the immunosuppression process [46,52,58].
Successful removal of these cells restores the
proliferation ability of lymphocytes. The
observations may lead towards suppressor cells and
provide a clue for therapeutic interventions and
vaccination.

The impact of myeloid derived suppressor

cells (MDSCs) on immunosuppression

Progression of Leishmania donovani infection is
associated with reversible immunosuppression
[40,46,50,59] in an animal model and immuno -
competent hosts. The extent of immunosuppression
has been determined by a gradual decrease in

lymphocyte proliferation index in in vitro and in
vivo cell culture based on Delayed Type
Hypersensitivity responses (DTH). The findings do
not, however, provide any detail of antigen-specific
T cell immune response in vivo and in vitro during
the progression of infection. Recent evidence
suggests that a decrease in TH1 response together
with lower IFN-γ expression is associated with
parasitemia. An increase in interleukin 10
expression has been demonstrated during
progression of disease with immunosuppression
[60]. The investigations also indicate dysfunction of
antigen presentation due to changes in the HLADR/
MHCII genes regulating susceptibility patterns in
visceral leishmaniosis [55,56,61]. 

The observations on immunosuppression in
Leishmania infection suggest the presence of
myeloid-derived cells in suppression of T cell
response. These myeloid derived suppressor cells
(MDSCs) have morphological similarity with
granulocyte monocyte progenitor cells expressing
granulocyte monocyte markers CD11b (Mac1) and
Gr1 [62]. Accumulation of MDSCs in the spleen
confers immunosuppression and anergy of TH1 cells
via a mechanism not yet completely understood.
However, MDSCs are found as a mixed population:
one set is granulocytic while the other is monocyte
derived with Gr1hiCD11b hi F4/80 int marker
expression. These cells release nitric oxide (NO)
and suppress T cell-mediated immune response
[63]. 

The regulation of MDSC-mediated immuno -
suppression in VL by the generation of specific
inflammatory immune responses is significant for
therapeutic point of view. Role of nitric oxide (NO)
and NO-bound protein complex nitrotyrosine has
been found very critical in MDSC mode of action
and inflammatory responses.  The Modolell et al.
[64] suggest that arginase enzyme may be involved
in the depletion of L-Arginine in nonhealing
cutaneous leishmaniosis caused by L. major.
Recently, Abebe et al. [65]  have suggested that, an
increase in arginase enzyme may serve as a marker
for VL patients in Ethiopia: the elevated level of
arginase in the peripheral blood circulation of VL
patients decreased following successful treatment. 

This observation is important for two reasons:
firstly, the findings highlight the intrinsic
susceptibility of the Ethiopian population through
generation of MDSCs, and secondly, it indicates
that, sustained activation of macrophage/monocyte
system is required with inflammatory responses



which destroys intracellular amastigotes. Both of
the findings, provide an indication of the
susceptibility patterns of patients towards parasite
infection. However, little is known on mode of
interactions between MDSCs, professional antigen
presenting cells (APCs) and T cells in the induction
of the immunosuppression process.

Conclusion and future perspectives

The onset of immunosuppression is a critical
event during the progression of visceral leishmaniosis
in a susceptible population. Therefore, identification
of the mechanism of antigen presentation and the
mode of action of myeloid derived suppressor cells
(MDSCs) are two important aspects whose
understanding is needed for therapeutic interventions
of the disease.

In addition to the conventional drug stibanate,
immunotherapy and vaccination approaches deserve
special attention in geographically-distinct popu -
lations. The choice of vaccination using anti-CR3,
mannose binding protein (MBP)-specific
neutralizing monoclonal antibodies has promise in
the prevention of L. donovani infection. The design
of specific siRNA (silencer RNA) or micro RNA
profiles for CR3 and mannose binding protein is an
approach for development of a synthetic vaccination
strategy for the prevention of promastigote entry
into macrophages during sandfly bite in endemic
zone populations. In the aspects, further research is
necessary to prevent progression of visceral
leishmaniosis.
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