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ABSTRACT. Helicobacter pylori is a Gram-negative, microaerophilic rod colonizing the stomach mucosa. In most
cases, the colonization of this organ is asymptomatic, while some people may develop diseases, including gastritis,
peptic ulcers and gastric cancers. The infection caused by H. pylori is accompanied by the secretion of pro-inflammatory
cytokines and the strong response of Th1/Th17 cells. Because this bacterium colonizes more than half of the human
population, co-infections with other pathogens are a relatively common phenomenon. One of such etiological factors
are viruses that have an immunomodulatory effect on the infection caused by this microorganism. The relationship
between H. pylori and HIV is antagonistic because there is an inverse relationship between the occurrence of this virus
and the presence of H. pylori-dependent inflammations of the stomach. This is most probably caused by the HIV-related
shift from a Th1 to a Th2 response and the reduction in Th17 cell counts. The reverse, synergistic interaction was
demonstrated between H. pylori and EBV. Both of these pathogens are responsible for the recruitment of immune cells
with a pro-inflammatory activity leading to the induction of gastric inflammation. The presence of the pro-inflammatory
environment in the stomach supports the multiplication of both pathogens by maintaining H. pylori in the form of
metabolically active, spiral forms and switching EBV from a latent into lytic phase. This review article discusses the
epidemiology, pathophysiology and clinical consequences of H. pylori co-infection with HIV and EBV.
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Helicobacter pylori is a Gram-negative, micro -
aerophilic, flagellated rod colonizing the stomach
mucosa of humans. This microorganism occurs
naturally in a spiral form (live, culturable), while
under conditions of increased environmental
pressure it has the ability to transform into a coccoid
form (viable but non-culturable, VBNC), a
morphotype with a low metabolic activity [1]. It is
estimated that over half of the human population
(4.4 billion people) is colonized by H. pylori. The
frequency of this process depends on many factors,
i.e. the level of urbanization and sanitation, access
to clean water or socioeconomic status. At the
continental level, the highest rate of infection occurs
in Africa (70.1%) and the lowest in Oceania
(24.4%). Nigeria (87.7%), Portugal (86.4%),
Estonia (82.5%), Pakistan (81%), and Kazakhstan
(79.5%) are among the countries with the highest
rate of infection. The lowest infection rates were

recorded in Switzerland (18.9%), Denmark (22.1%),
New Zealand (24%), Australia (24.6%), and Sweden
(26.2%). The prevalence of H. pylori in the countries
of Central and Western Europe is contained in
average values, i.e. Germany (35.5%), the Czech
Republic (41.2%), France (46.9%), and Poland
(66.6%) [2]. These discrepancies in the prevalence of
H. pylori between the countries of Central and
Western Europe are most likely caused by
differences in the socio-economic status, because a
high level of poverty, overcrowded living conditions
and low personal hygiene are independent factors
promoting H. pylori infections [3–8].

Colonization of the stomach by H. pylori most
often takes place in childhood and persists
throughout life in the absence of appropriate
eradication therapy [9,10]. In most cases,
colonization of this organ is asymptomatic, but in
some cases diseases may develop, including



gastritis, peptic ulcers, gastric cancers and mucosa
associated lymphoid tissue (MALT) lymphomas
[11–14]. The acute phase of infection is associated
with an intense inflammation of the gastric mucosa.
This process is accompanied by an increased
secretion of pro-inflammatory cytokines and the
recruitment of various types of immune cells, i.e.
neutrophils, macrophages, dendritic cells, B and T
cells [15]. Such environment is dominated by the
presence of pro-inflammatory cytokines (IL-2, IL-6,
IL-12, IFN-γ, TNF-α), which influences the shift of
lymphocyte subpopulation towards proinfla mma to ry
Th1 cells [16,17]. In addition, the presence of anti-
inflammatory cytokine TGF-β may ultimately affect
the exacerbation of inflammatory reactions. This
phenomenon is determined by the ability of this
cytokine to stimulate the recruitment of both Th17
cells (strong pro-inflammatory activity; secretion of
IL-17A, IL-17F, IL-21, IL-22) and Treg cells (strong
anti-inflammatory activity; secretion of IL-10 and
TGF-β). The presence of IL-6, produced intensively
during the infection caused by H. pylori, modulates
the activity of TGF-β and contributes to the
formation of Th17 but not Treg cells. The intensified
recruitment of Th1 and Th17 cells favors their
hyperactivity and may lead to the destruction of
gastric tissue in reactions directed against this
microorganism. Despite the strong activation of the
immune system, the infection caused by H. pylori
can last for many years, often even all life [16,18,
19].

Because H. pylori colonizes more than half of
the human population, co-infections with other
pathogens are a relatively common phenomenon.
One of them are parasites, while the main mediator
of the response to the ongoing infection is the host’s
immune system. Protozoa, which promote the
formation of type 1 immune response (Th1 cells and
classically activated macrophages, CAM), increase
the intensity of inflammation and, therefore, may
lead to aggravated gastric lesions. Helminths are
responsible for the development of type 2 immune
response (Th2 cells and alternatively activated
macrophages, AAM), which determine the
reduction of host hyperresponsiveness and exert a
regenerative effect on the mucous membranes of the
gastrointestinal tract [20–23], reviewed in [24].

Viruses are another important pathogens, besides
parasites, able to co-infect humans together with H.
pylori. For many of them, the ability to modulate
host’s immune system has been demonstrated,
which may affect the functioning of this bacterium

and H. pylori-depend inflammation of the gastric
mucosa. 

The aim of this review is to present information
about the frequency of H. pylori co-infections with
two viruses with high immunomodulatory activity,
human immunodeficiency virus (HIV) and Epstein-
Barr virus (EBV), and their effect on the course of
infection caused by this microorganism.

HIV

The global HIV pandemic, after thirty years
since the virus was discovered, still remains valid. It
is estimated that over 78 million people have been
infected with this virus, of which 36 million
currently live with HIV [25]. The HIV epidemic
originated during zoonotic infections caused by
simian immunodeficiency viruses (SIV). Bushmeat
hunters were most likely the first infected group of
people who contributed to the spread of the virus to
the rest of the population [26]. A key feature of
infection caused by HIV is a decrease in the amount
of CD4+ T lymphocytes. Because these cells have a
central regulatory role in the proper functioning of
the immune system, a reduction in their amount
contributes to significant defects in the cellular and
humoral antimicrobial response [27]. When the
amount of CD4+ T lymphocytes drops below
200/mm3, acquired immunodeficiency syndrome
(AIDS) develops, which is associated with a dynamic
increase in viral load, drastic reduction in CD4+ T
lymphocytes and decrease in immunity of infected
persons [28]. This condition is conducive to the
emergence of opportunistic infections caused by,
among others, Pneumocystis carinii, Myco bac terium
tuberculosis, Mycobacterium avium intra cellu lare,
Cytomegaloviruses, Adenoviruses, Herpes simplex
viruses and Candida albicans [29,30].

The factor that significantly reduced the
mortality rate of people suffering from HIV and
improved the quality of their lives was the
introduction of anti-retroviral therapy (ART).
Compounds used during this procedure interfere
with various key HIV-related processes by
inhibiting viral enzymes (reverse transcriptase,
integrase, protease) and blocking the entry into the
interior of eukaryotic cells [31]. Therapy with the
use of these medications has evolved over the years
and therefore three periods are distinguished: pre-
HAART (highly active antiretroviral therapy,
1993–97), early HAART (1998–2003) and
contemporary HAART (2004–present); among
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which the latter is the most effective [25]. Despite
the high efficiency of ART, drugs used are unable to
completely eliminate HIV from the infected
person’s body. This is most likely caused by the
existence of additional reservoirs of this virus,
which are long-lived, latently infected resting CD4+

T lymphocytes and monocytes/macrophages. In
addition, this virus can also be found in the tissues
of the digestive tract and central nervous system
[32–34].

Frequency of H. pylori and HIV  
co-infection

The risk factors for the acquisition of H. pylori
and HIV are different. For the first etiological factor,
the main ways of spreading are gastro-oral and
fecal-oral pathways; HIV, on the other hand, is
spreading by sexual intercourses, contaminated
body fluids or transplancentally [35–38]. Therefore,
the presence of any of these pathogens should not
affect the frequency and course of infection caused
by the latter. A review of literature data, however,
shows a different relationship [39–45].

In many articles, there was an inverse correlation
between the incidence of H. pylori and HIV,
especially in patients with CD4+ T lymphocytes
counts below the 200 cell/mm3 threshold [39–45].
In two studies, the existence of such a dependence
was noticed, although the differences between the
studied groups were insignificant; H. pylori pre -
valence in patients without HIV infection (HIV-)
and with HIV infection (HIV+) was estimated at
49.5% vs 41.1% [40] and 87.3% vs 73.1% [42],
respectively. Eberhardt et al. [43] found a bigger
difference, with the prevalence of H. pylori in HIV-

and HIV+ counted for 87.3% vs. 56.2%, respectively.
Fialho et al. [39] determined that the frequency of H.
pylori in HIV-infected patients was almost twice
lower (75.2% vs. 37.2%). In addition, in people with
CD4+ T lymphocytes >200 cells/mm3 this frequency
was higher (46.3%) than in patients with ≤200
cells/mm3 (28.8%) [39]. A similar frequency of
infection was shown by Lv et al. [44], in HIV-Hp+

it counted for 44.8%, and in HIV+Hp+ 22.1%. Here
also the existence of lower prevalence of H. pylori
in patients with lymphocytes ≤200 cells/mm3

(29.2% vs 14%) was noticed. Mach et al. [41]
observed a similar trend, i.e. the occurrence of H.
pylori was confirmed in 69%, 72% and 40% of
HIV-Hp+ patients, HIV+Hp+ CD4+ >200 cells/mm3

and CD4+ ≤200 cells/mm3, respectively. The study

of Cacciarelli et al. [45] showed the prevalence of
H. pylori in the same patient categories at 63%, 69%
and 13%. On this basis, the conclusion was drawn
that the incidence of H. pylori decreases with
decreasing amounts of CD4+ T lymphocytes
[39,41–46]. Because the presence of this bacterium
exerts a stimulatory effect on CD4+ T lymphocytes in
HIV+Hp+ people, a higher level of them was
observed, which in turn correlated with the lower
load of virus [40,43,46]. This suggests that H. pylori-
dependent recruitment of lymphocytes may increase
the antiviral activity of immune cells during HIV
infections.

Immunological consequences of H. pylori

and HIV co-infection

Numerous scientific reports have recognized the
immunomodulatory effect of HIV against the
activity of H. pylori and associated with this
bacterium gastric mucosa pathologies [25,41,44,45,
47]. In these studies, it was noted that the presence
of HIV reduces the incidence of active gastritis
and/or peptic ulcer disease in individuals infected
simultaneously by H. pylori. The frequency of
gastritis detection in HIV+Hp+ patients was almost
twice lower than in HIV-Hp+ patients (37% vs 63%)
[47], and gastric ulcer disease was 4-fold [44] or 8-
fold lower (HIV- vs AIDS) [45]. In a recent study,
Radovanović et al. [25] analyzed the correlation
between the prevalence of gastric pathologies and
HAART. It was observed that in the pre-HAART
patient group the severity of gastritis was lower
(16% without gastritis, 66.7% mild gastritis) than
those treated with the early HAART (62.5% mild
gastritis, 25% moderately advanced gastritis) or
modern HAART (50% mild gastritis, 37.5%
moderate advanced gastritis, 12.5%   advanced
gastritis). These results may suggest that increased
effectiveness of antiviral therapies against HIV has
contributed to a stronger reduction in virus number
and more advanced H. pylori-dependent pathological
changes in the stomach [25]. On this basis, the
authors of the papers concluded that H. pylori to
trigger inflammation of the stomach mucosa
requires a functional immune system of the host
[25,41,44,45,47].

Hypotheses explaining H. pylori-HIV
interactions

Currently, there are two hypotheses explaining
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the existence of an inverse correlation between the
prevalence of HIV and H. pylori.

The first one suggests a high level of antibiotic
use in HIV+ people in purpose of protection against
potential opportunistic infections. Frequent
consumption of antibiotics may lead to incidental
eradication of H. pylori [48]. It seems, however, that
this model is not reliable, because although such a
situation is not impossible, there is a marginal
chance that this phenomenon contributes to such
significant differences in the prevalence of H. pylori
between groups of HIV+ and HIV- patients.
Moreover, nowadays, the high level of antibiotic
resistance of H. pylori strains (including two or
three antibiotics at the same time) is observed all
over the world, so the use of monotherapy seems
insufficient to achieve full eradication of this
bacterium [49–52]. This model was further
indirectly refuted by Nkuize et al. [53], who showed
that HIV+ patients were more likely to have strains
of H. pylori resistant to levofloxacin, metronidazole
or several antibiotics (clarithromycin and
metronidazole, levofloxacin and metronidazole, or

all three antibiotics). Therefore, H. pylori co-
infection with HIV seems to be responsible for
spreading of antibiotic resistance among the strains
of this bacterium rather than eradicating this
microorganism.

The second hypothesis mentions that in the
course of acute inflammatory processes many cells
of the gastric mucosa are destroyed and nutrients
released from them are collected then by H. pylori.
Because in people with HIV infection, especially
with AIDS, the destruction of the stomach is
reduced, it may limit the amount of substances
available for H. pylori and lower the prevalence of
this bacterium during HIV infection [54]. This is
consistent with reports of preferential colonization
of damaged stomach mucosa sites by H. pylori [55].
This model takes into account that properly
functioning immune cells through activity directed
against H. pylori may contribute to the destruction
of stomach epithelial cells and the release of
nutrients accumulated there. However, this
bacterium is able to obtain the necessary substances
from the stomach mucosa through the production of

Fig. 1. Inverse correlation between the occurrence of HIV and H. pylori – the morphological conversion hypothesis. 
As a result of HIV infection, there is a decrease in the number of Th1 and Th17 cells and secretion of IFN-γ and IL-17,
respectively. The reduction in the production of these pro-inflammatory cytokines correlates with a lower intensity of
gastric inflammatory processes and a reduced level of ROS and AI-2 mimics. Lower secretion of these factors correlates
most probably with a decreased spiral subpopulation of H. pylori and a simultaneous increase in the subpopulation of
spherical forms. The reduced metabolic activity of coccoid forms may contribute to a lower level of H. pylori detection
using standard detection methods, but not necessarily with the actual reduction of its prevalence.



virulence factors, i.e. vacuolating cytotoxin A
(VacA), cytotoxin-associated gene A (CagA),
neutrophil-activating protein A (NapA) or HtrA
protease that exert direct, destructive effects on this
tissue, regardless of the presence of immune cells
[56–59]. Therefore, it seems that the model of
nutritional limitations caused by HIV is too
simplified.

Based on a review of literature data, the authors
of this review suggest the existence of an alternative
model explaining the antagonistic relationship
between the occurrence of HIV and H. pylori (Fig.
1).

In people infected with H. pylori, a mixed
Th1/Th17 response develops, which is associated
with a strong activation of the immune system and
destruction of local stomach tissues [60]. The main
factors involved in the promotion of H. pylori-
dependent inflammation of the gastric mucosa are
pro-inflammatory cytokines IL-8 [61], IL-17A
[60–65], INF-γ [60,62–65] and TNF-α [62].
Secretion of these cytokines and recruitment of Th1
and Th17 cells is essential for the fight against H.

pylori, while most often it is insufficient to
effectively eradicate this bacterium [16].
Interestingly, the number of lymphocytes producing
the above-mentioned cytokines is positively
correlated with H. pylori density. Therefore, it
seems that the activity of Th1/Th17 cells and the
generation of a pro-inflammatory environment
favor the survival of H. pylori in the stomach
[60,61,63].

In the study, Ismail et al. observed that
mammalian epithelial cells in response to factors
destructing tight junctions (including pore-forming
toxins) secreted substances with structural
homology with autoinducers-2 (AI-2), i.e. signaling
molecules responsible for an intermicrobial
communication [66]. For H. pylori AI-2 are
chemorepulsive signals, which means that they
promote negative chemotaxis against the source of
these signals [67,68]. It is also suggested that AI-2
may play a key role in keeping these bacteria in a
spiral form and/or transforming from a spherical into
a spiral form [69]. The H. pylori chemorepulsive
movement has also been demonstrated against
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Fig. 2. Lack of relationship between a global H. pylori and HIV distribution.
In order to compare the global distribution of the two pathogens, data from Hooi et al. [2] have been modified according
to [80] and presented as: Europe (Europe + Central Asia + Greenland), Americas (Greenland has not been counted here),
South-Eastern Asia (South-Eastern Asia, India and Nepal), Western Pacific (Eastern Asia + Oceania), Eastern
Mediterranean (Western Asia, Iran, Lebanon, Pakistan, Egypt, Libya and Tunisia) and Africa (Egypt, Libya and Tunisia
have not been counted here).



sources of oxidative stress, including reactive
oxygen species (ROS) [70]. On this basis, it can be
concluded that inflammation of the gastric mucosa,
through the generation of AI-2 mimic and ROS,
maintains H. pylori in a state of live, metabolically
active spiral forms.

Numerous scientific reports have highlighted the
immunomodulatory properties of the HIV. It was
noticed that as a result of infection caused by this
virus the Th1 response is shifted to Th2 type [71–74]
and the Th17 cells number is decreased [75]. The
enhancement of the polarization of Th2 cells by HIV
is particularly evident in the case of co-infections
with helminths, which also determine the
recruitment of this subpopulation of immune cells.
The co-occurrence of HIV with these parasites
correlated with the higher plasma viral load, and
anti-parasitic therapy eliminated this effect [76,77].
It was observed that the process of shifting response
from the Th1 to the Th2 type and reducing the
number of Th17 cells is accompanied by a decrease
in secretion of IFN-γ and IL-17, two key cytokines
in the H. pylori-dependent generation of the gastric
inflammation [71–75]. Such a change in the activity
of the immune system may have a direct effect on
the physiology of H. pylori and reduce the
frequency of spiral forms of this bacterium with the
growing appearance of spherical forms. This is
consistent with the observations showing the
inverse correlation between the prevalence of H.
pylori coccoid forms and the exacerbation of
destructive changes in the gastric mucosa [78,79].

Indirect proof of the absence of a reverse
correlation between prevalence of H. pylori and HIV
provides an analysis of the global distribution of
these pathogens [2,80]. Comparing the prevalence of
these etiological factors in the world, the authors of
this article did not observe any relationship between
the occurrence of HIV and H. pylori. Although, for
both of them the highest prevalence is noticed in
Africa (4.1% and 90.9%, respectively), the frequency
is variable in other parts of the world (Fig. 2). For
example, the lowest prevalence of H. pylori is
observed in Europe (49.7%), while in the case of HIV
it is relatively high being fourfold higher (0.4%) than
for the Western Pacific (0.1%) and Eastern
Mediterranean (0.1%) regions (Fig. 2). Despite the
same prevalence of HIV in these areas, H. pylori is
detected at a different rate of 53.4%   and 66.3%,
respectively (Fig. 2). On this basis, it appears that the
relationship in the global distribution between H.
pylori and HIV does not exist.

To sum up, based on the above considerations, the
existence of an antagonistic relationship between
HIV and H. pylori is suggested (Fig. 1). In the course
of infection caused by HIV, a strong recruitment of
Th2 cells and reduction of Th1/Th17 cells occur. This
phenomenon is accompanied by a decrease in the
pro-inflammatory response against H. pylori and the
intensity of gastritis, and thus lower generation of
ROS and AI-2 mimic. Lower secretion of these
factors correlates most probably with a decreased
spiral subpopulation of this bacterium and a
simultaneous increase in the subpopulation of
spherical forms – viable but non-culturable. The
reduced metabolic activity of these morphological
forms may contribute to a lower level of H. pylori
detection using standard detection methods, but not
necessarily with the actual reduction of its
prevalence. Therefore, we propose to name this
model as a „Morphological conversion hypothesis”.

EBV

EBV (Herpesvirus-4, HHV-4) is a dsDNA virus
that belongs to the γ-herpesvirus family. EBV
infections occur with an 80–100% incidence among
adults around the world, and the first contact with
this pathogen occurs in early childhood. The virus
spreads through droplets, by contact with the saliva
of the infected person. After contact with secretions,
epithelial cells of the nasopharynx are infected.
Then, the virus spreads to lymphoid tissues where it
infects B lymphocytes [81–84].

During infection, EBV remains lifelong in the
latent phase in B cells. Due to this localization, this
virus has the ability to initiate various
lymphoproliferative diseases (Burkitt’s lymphomas,
Hodgkin’s lymphomas, diffuse large-B cell lympho -
mas), as well as mononucleosis, auto immune
diseases and cancers (nasopharynx and stomach)
[81,85–90]. Most of the infections caused by EBV
are asymptomatic, while the manipulation of host
cell physiology during the latent phase may lead to
induction of carcinogenesis [91]. The EBV potential
to induce stomach tumors is caused by the high
morphological similarity between lympho -
epithelioma-like carcinoma (LELC) and undi -
fferentiated nasopharyngeal carcinoma (UNPC) [92,
93]. For this reason, determining the prevalence of
EBV and H. pylori co-infection and the potential
interaction between these etiological factors seems
highly significant.
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Immunological consequences of H. pylori

and EBV co-infection

Due to the high frequency of colonization of the
human population by both pathogens, often
reaching 80–90% in some populations, the majority
of research focuses on the pathophysiological
effects of H. pylori and EBV co-existence.

In the analysis of biopsies taken from people
with various gastrointestinal diseases, Shukla et al.
noted that the frequency of EBV DNA isolation was
significantly higher in patients with gastric cancers
(GC, 90%) and gastric ulcers (PUD, 70%) than in
those with non-ulcer dyspepsia (NUD, 37%) [94].
In addition, GC and PUD subjects had a higher copy
of the virus (1329.2 copies/106 eukaryotic cells and
754 copies/106 eukaryotic cells, respectively)

compared to NUDs (86.8 copies/106 eukaryotic
cells). It has also been observed that co-infection
increase both the number of virus copies (EBV+Hp-

177.8 copies/106 eukaryotic cells vs EBV+Hp+

519.4 copies/106 eukaryotes), as well as the amount
of H. pylori, calculated by specifying the number of
ureA copies (EBV-Hp+ 1329 copies/106 eukaryotic
cells vs EBV+Hp+ 2500 copies/106 eukaryotic
cells). These results suggest that the presence of one
of these etiological factors exerts a beneficial effect
on the multiplication of the other and vice versa [94]
(Fig. 3). The mechanisms controlling this interaction
are not known. One of the suggested factors related to
the transition of EBV from the latent to the lytic
phase is monochloramine (NH2Cl), which is formed
in the H. pylori-dependent manner during the
inflammation of gastric mucosa. This was

Immunomodulatory influence of HIV 9

Fig. 3. Synergistic relationship between EBV and H. pylori. 
During the infection caused by both EBV and H. pylori, immune cells associated with pro-inflammatory activity are
recruited leading to the induction of gastric inflammation. Promotion of this process indirectly influence the induction
of tumorigenesis and exert a pro-proliferative effect on H. pylori. As a result of the intensive multiplication of this
bacterium, there is an increased secretion of IFN-γ and monochloramine, which promote EBV proliferation and initiate
the shift of this virus from the latent to the lytic phase. EBV and H. pylori CagA+ strains are able to immortalize and
induce uncontrolled proliferation of eukaryotic cells by promoting high concentrations of anti-apoptotic Bcl-2 protein.
This process promotes the multiplication of the virus, found inside the eukaryotic cells, which in turn determines an
increase in CagA-dependent promotion of oncogenesis. This phenomenon is related to silencing of the eukaryotic factor
with anti-CagA activity-SHP1, increasing the amount of CagA-SHP2 complexes and boosting the pro-oncogenic
activity of this protein. In addition, EBV and H. pylori CagA+ strains reduce the amount of tumor suppressor genes
(TSGs), thus indirectly leading to the promotion of tumorigenesis.
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demonstrated by the action of NH2Cl on AGS cell
line infected latently by EBV, resulting in a massive
entry of the virus into the lytic phase [95]. The second
factor potentially involved in the promotion of EBV
proliferation is the H. pylori-dependent stimulation of
IFN-γ secretion, one of the key pro-inflammatory
cytokines arising in the course of gastric
inflammation. It was noticed that the level of this
cytokine in the plasma of patients with gastric
cancers was positively correlated with the degree of
reactivation of the virus [96]. On the other hand, EBV
has also been shown to be able to support H. pylori
multiplication [94]. The reason for this mechanism
has not been characterized. Co-infection with both
etiological factors contributes to the intensification of
the immune cells influx and the secretion of pro-
inflammatory cytokines in the gastric mucosa. It
seems, therefore, that an increase in the density of H.
pylori localized in the stomach occurs through
intensified activity of Th1/Th17 cells and generation
of the pro-inflammatory environment (Fig. 3).

Studies of Cárdenas-Mondragón et al. focused
on establishing the relationship between both the
occurrence of a single infection caused by H.
pylori or EBV and co-infections with severity of
gastric pathologies [97,98]. The first study
determined seroprevalence against EBV and H.
pylori in patients with stomach diseases. Special
attention was paid to the analysis of people with
carcinogenesis processes. It was found that anti-
EBV antibodies were positively correlated with the
presence of premalignant lesions and intestinal-
type cancers, whereas anti-H. pylori antibodies
were associated with the presence of premalignant
lesions and diffuse-type cancers. Attention was
drawn to the existence of a relationship between
the exacerbation of gastric mucosa inflammation
and the increased degree of EBV reactivation,
suggesting a potential contribution of pro-
inflammatory products in initiating the transition
of this virus to the lytic phase [98] (Fig. 3).
Observations on pro-oncogenic potential of H.
pylori and EBV are consistent with Szkaradkiewicz
et al. [99] reports, who proved that in the course of
infection caused by these pathogens there is an
increased expression of the eukaryotic anti-
apoptotic factor Bcl-2, which may contribute to the
development of the carcinogenesis (Fig. 3). In the
second study of Cárdenas-Mondragón et al.,
children with abdominal pain were analyzed [97]. It
has been shown that the infection caused by one
pathogen was associated with the benign or moderate

recruitment of mononuclear cells (EBV+: 97.8%
mild, 0% advanced; Hp+: 66% mild, 7.5% advanced),
and co-infection significantly exacerbates this
process (EBV+Hp+: 60% mild, 16.8% advanced).
Similar observations have been made for
polymorphonuclear immune cells. In this case, the
infection with a single etiological factor was not
responsible for the recruitment of this type of cells or
determined only its mild course (EBV+: 94.4% none,
1.1% moderate advanced; Hp+: 60.4% none, 5.7%
moderate advanced), while the presence of both
pathogens intensified this process (EBV+Hp+: 58.4%
none, 21.6% moderate advanced). Furthermore, the
presence of H. pylori strains producing CagA
(CagA+), the toxin responsible for the cytoskeleton
rearrangements and the stimulation of the
oncogenesis process, were associated with the
highest intensity of immune cells influx [97].

There are scientific reports demonstrating the
significance of CagA as a modulator of EBV-H.
pylori interaction [100,101]. CagA exists in two
forms, i.e. phosphorylated and non-phosphorylated.
Both forms have a pro-inflammatory effect on
eukaryotic cells, whereas for the phosphorylated
form high significance in initiating oncogenesis is
suggested. This mechanism is related to the ability
of the phosphorylated CagA to form complexes with
the eukaryotic factor SHP2, and thus the process of
initiating inflammation and morphological changes
in host cells, so-called a hummingbird phenotype
[102] (Fig. 3). SHP1 is a eukaryotic factor regulating
CagA activity, contributing to the protection against
the destructive effect of this protein by the process of
dephosphorylation and reduction of the CagA-SHP2
formation. In in vitro conditions, it was observed that
in EBV-infected eukaryotic cells the SHP1 promoter
undergoes hypermethylation, thereby reducing the
amount of SHP1 and the degree of CagA
dephosphorylation, which in turn increases the pro-
oncogenic activity of this bacterial protein [100]
(Fig. 3). Another study found that the co-existence
of H. pylori with EBV increased the pro-
carcinogenic potential of the latter, and the main
mediator of this interaction was CagA. EBV
contributed to the methylation of tumor suppressor
genes (TSGs) and this ability was further enhanced
by the presence of CagA, secreted by H. pylori. The
phenomenon of a strong reduction in TSGs activity
promotes the uncontrolled pro liferation of virus-
containing cells, conditioning its faster multi -
plication, and increases the chances of developing



tumors [101] (Fig. 3). These studies show that both
EBV and H. pylori, in the epigenetic modification
processes, support each other’s survival capabilities
in the host and the potential to induce pathological
processes, including the ability to cause
inflammations and cancers.

To sum up, based on the above considerations, it
is suggested that there is a synergistic relationship
between EBV and H. pylori (Fig. 3). During the
infection caused by both EBV and H. pylori,
immune cells associated with pro-inflammatory
activity are recruited leading to the induction of
gastric inflammation. What’s more, the co-infection
of both pathogens is associated with exacerbation of
this phenomenon. Increased secretion of pro-
inflammatory cytokines is most likely a stimulant
for H. pylori proliferation and transition of EBV
from the latent to the lytic phase. Intensive
proliferation of both etiological factors further
strengthens the induction of gastric inflammation-
dependent pathologies. H. pylori CagA+ strains are
characterized by the highest level of synergistic
activity with EBV in promoting pathophysiological
changes, which is dependent on the ability of CagA
to initiate the immortalization and increased
proliferation of eukaryotic cells. Uncontrolled
divisions of host cells support the multiplication of
latent EBV, which in turn determine the increase in
the intensity of CagA-dependent oncogenesis
promotion. This phenomenon is associated with
hypermethylation of SHP1 by EBV, increase in the
amount of CagA-SHP2 complexes and promotion
of the pro-oncogenic activity of this protein. This
model suggests that the interaction between H.
pylori and EBV has the character of positive
feedback.

Summary

H. pylori colonizes over half of the human
population. For this reason, co-infections with other
pathogens occurs relatively frequently. One of these
pathogens are viruses, including HIV and EBV.

The key feature of infections caused by HIV is a
decrease in the number of CD4+ T lymphocytes and,
what is associated with this, a decrease in the
activity of the immune system. In many scientific
reports, attention was drawn to the existence of an
inverse correlation between the occurrence of HIV
and H. pylori, especially in people with AIDS. In
addition, the presence of HIV significantly reduces
the incidence of H. pylori-related gastrointestinal

diseases. On this basis, the conclusion was
formulated that this bacterium to cause inflammation
of the gastric mucosa requires the presence of a
functional host immune system. The hypotheses
explaining this phenomenon mention a high degree
of antibiotic use in HIV+ patients and a reduction in
the immune-dependent breakdown of eukaryotic
cells that are the source of nutrients for this
bacterium. An alternative hypothesis, based on our
own considerations, suggests that by a shifting the
Th1 response towards Th2 type and reducing the
number of Th17 cells the frequency of the
metabolically active, spiral H. pylori forms
decreases with a simultaneous increase in the
amount of coccoid forms. The presence of these
morphological forms may decrease the
effectiveness of H. pylori detection using routine
diagnostic methods, but does not necessarily
correlate with the actual reduction of the prevalence
of this microorganism („Morphological conversion
hypothesis”) (Fig. 1).

In the course of the host infection, EBV remains
in the latent phase in B cells, which is related to the
ability to initiate various lymphoproliferative,
autoimmune and oncogenic diseases. It was noticed
that there is a positive correlation between H.
pylori-EBV co-infection and the severity of
gastrointestinal diseases (Fig. 3). This mechanism is
most likely dependent on the ability of these
pathogens to intensify the influx of immune cells,
increase the secretion of pro-inflammatory
cytokines and promote their own multiplication.
Observations of many scientific centers have shown
the pro-oncogenic potential of these pathogens,
especially in the course of co-infection. This
phenomenon is related to the induction of
uncontrolled proliferation of eukaryotic cells and
the reduction of TSGs activity. The interaction
between H. pylori and EBV has the character of
positive feedback.

This article demonstrates the immuno -
modulatory effect of HIV and EBV on the course of
infection caused by H. pylori. Based on the
literature review, it is concluded that the co-
existence of H. pylori with other pathogenic agents
may diametrically shape the pathophysiology of this
bacterium. Therefore, a holistic view of disease
processes taking place in the human body is
postulated.
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