A report of ectoparasites on cave nectar bat (Eonycteris spelaea) among cave-dwelling in Lombok Island, West Nusa Tenggara, Indonesia

Siti Rabiatul FAJRI1, Sucika ARMIANI1, Akhmad SUKRI1, Ibnu MARYANTO2

1Department of Biology Education, Faculty of Applied Science and Engineering, Universitas Pendidikan Mandalika, Jl. Pemuda 59A Mataram 83125, Lombok, Indonesia
2Museum Zoologicum Bogoriense, Biology Research Center, National Research and Innovation Agency, Jl. Raya Jakarta-Bogor KM 46, Cibinong Bogor, Indonesia

ABSTRACT. Studies were conducted from March to August 2021 in 4 caves located in Lombok Island (Gunung Tunak cave, Gale-Gale cave, Buwun cave, and Tanjung Ringgit cave). Eonycteris spelaea was infested with 7 species of ectoparasites consisting of 4 species from the class Insecta (Diptera: Eucampsipoda sundaica and Cyclopodia horsfieldii, and Siphonaptera: Ischnopsyllus hexactenus and Thaumapsylla breviceps), and 3 species from the class Arachnida (Amblyomma sp., Ancystropus sp, and Meristaspis sp.).

Keywords: Eonycteris spelaea, ectoparasites, cave, Lombok Island, Indonesia

Introduction

Family Pteropodidae (Chiroptera) consists of 42 genera and 182 species worldwide [1]. In Indonesia, this family has 21 genera and 72 species [2]. Members of this family are known as seed dispersers, flower pollinators, and guano producers.

Eonycteris spelaea is one of the bats that plays a role in pollinating flowers commonly found in caves. This is why the species is often called cave fruit bat or cave nectar bat. The distribution of Eonycteris spelaea is very wide ranging from Malay-Indonesia, the southern Chinese islands, and the Indian continent [1]. In addition, it is widely distributed from southwest and north of India, Southern China, Andaman, Myanmar, Malaya, Philippines, Sumatra, Java, Kalimantan, Sulawesi, Bali, Lombok, Sumba, Timor and Halmahera [3–6].

The habitat of this species can be found in agricultural area, primary forest, secondary forest, and coastal mangrove [7,8]. This species forages at a distance of more than 38 km from their nesting sites at night [9], while on a trip, Eonycteris spelaea has been reported to cover a distance of up to 17.9 km to 38 km between the roost and foraging areas in Thailand and Malaysia [9] and Khteas Cave in southern Cambodia [10].

In general, bats play an important role in ecosystems, including seed dispersal, pollination, and insect predation. Meanwhile, Eonycteris spelaea bat plays a special role as plant pollinator. Various types of plants have been reported to have pollination assisted by the bat species. These plants include durian (Durio zibethinus), a leguminous canopy tree Parkia spp., and petai (P. speciosa) and the Indian trumpet flower (Oroxylum indicum) in managed agricultural habitats in southern Thailand [11,12]. Thavry et al. [10] mentioned that, Eonycteris spelaea is an economically important pollinator for plants in Cambodia. The colony of Eonycteris spelaea was found perched in the Kampot cave and is endangered. Eonycteris spelaea is able to provide protection to mangrove plants and is also able to provide benefits to durian farmers and banana farmers.

The threats to bats population of Eonycteris spelaea are habitat loss, hunting [13], hunting for humans consumption [14] wildlife trade and death...
due to the presence of ectoparasites and bacteria in their bodies. Fruit bats are more likely to have ectoparasites than insectivorous bats [14]. The presence of ectoparasites can affect bats physical condition and will have an impact on long-term survival. Several studies have shown that ectoparasites tend to decrease the fecundity of bats. Ticks, mites, chiggers, bugs, fleas, and flies are some of the types of ectoparasites found in bats [15,16]. Some ectoparasites are associated with pathogens that can cause disease in humans or animals, both wild and domestic. According to [17,18] there were 14 types of ectoparasites found in 9 species of bats that perched in caves on Lombok Island, Indonesia. The ectoparasites consist of Diptera, Siphonaptera, Ixodida, and Mesostigmata groups. The bat fly, *Cyclopodia horsfieldii*, one of the ectoparasites, dominated the ectoparasites found from 9 species of bats examined. In Batuputih Nature Tourism Park, Sulawesi-Indonesia, 479 ectoparasites representing three families, namely Nycteribiidae, Striblidae (bat flies), and Spinturnicidae (mites) were collected. Majority of these ectoparasites (n=475) belonged to the family Nycteribiidae genus *Leptocyclopodia* [14]. Saniu et al. [19] mentioned that fruit bats (*Cynopterus brachyotis*) were infested with *Leptocyclopodia ferrarvi* (8%). In Goa Jepang Bukit Plawangan, Sleman Yogyakarta Indonesia, bats from the suborder Microchiroptera, were infested with ectoparasites belonged to the subclass Acarina and the Insecta class.

The species of subclass Acarina found were *Periglischrus* sp., *Spinturnix plecotinus*, *Blattisocius* sp., and *Glycyphagus* sp. Species of the Insecta class found include *Megastrubla* sp., *Styildia caudata*, *Basilia* sp., and *Brachytarsina* sp. [20].

Thus, this study aims to analyze the morphology of bat species of *Eonycteris spelaea* in 4 caves in Lombok Island and to identify the ectoparasites present in *E. spelaea*. *Eonycteris spelaea* it is important to study ectoparasites in bats to determine their potential role as vectors of zoonotic pathogens [21]. New report from Singapore, [22] mentioned that there are 261 species of *Eucampsipoda sundaica* found in *Eonycteris spelaea*. This research is also very important because the distribution of *Eonycteris spelaea* in the caves of Lombok Island is quite high.

### Materials and Methods

#### Study area

The study was conducted in Lombok Island in the four location, which included Central Lombok Regency: Bangkang Gale-Gale cave (08°53.188’S and 116°15.254’E, elevation 111 m), Buwun cave (08°53.375’S and 116°15.160’E, elevation 92 m), Gunung Tunak cave (08°56.60’S and 116°23.45’E, elevation 116 m), and East Lombok Regency: Raksasa cave (08°42.76’S and 116°39.56’E, elevation 92 m).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Tanjung Ringgit cave</th>
<th>Gale-Gale cave</th>
<th>Buwun cave</th>
<th>Gunung Tunak cave</th>
<th>[23]</th>
<th>[24]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>12</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>67</td>
<td>78</td>
<td>65</td>
<td>66.9</td>
<td></td>
<td>66.6</td>
</tr>
<tr>
<td>HB</td>
<td>105</td>
<td>91.7</td>
<td>97.8</td>
<td>109.9</td>
<td></td>
<td>110.5</td>
</tr>
<tr>
<td>T</td>
<td>19.9</td>
<td>18.4</td>
<td>25.1</td>
<td>20.4</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>E</td>
<td>20.5</td>
<td>20.5</td>
<td>20.6</td>
<td>19.8</td>
<td>16–22</td>
<td>17.9</td>
</tr>
<tr>
<td>TB</td>
<td>32.4</td>
<td>16.1</td>
<td>16.7</td>
<td>32.7</td>
<td>25–37</td>
<td>34</td>
</tr>
<tr>
<td>FA</td>
<td>65.9</td>
<td>78.8</td>
<td>74.9</td>
<td>67.5</td>
<td>60–81</td>
<td>72.4</td>
</tr>
<tr>
<td>HF</td>
<td>19.8</td>
<td>35.9</td>
<td>33.9</td>
<td>20.3</td>
<td>17–21</td>
<td></td>
</tr>
</tbody>
</table>

Explanations: N=number of examined, WT=weight (g), HB=head body (mm), T=tail (mm), E=ear (mm), TB=tibia (mm), FA=forearm (mm), HF=hind foot (mm)
Bat specimens (n=42) were collected using the trapping trap method with a mist net installed at the mouth of the four cave. The sampling was carried out when the bats came out of the cave at 18.30–19.00 WITA (Central Indonesian Time). Captured bats were removed from the net with a gloved hand and transferred into a cotton cloth bag for transport to the nearby processing station for morphometric measurements and identification using morphological criteria by [23,24].

**Ectoparasites collecting techniques**

*Eonycteris spelaea* specimens successfully collected were then examined, and samples of ectoparasites were collected manually from the bat’s body was carried out sequentially starting from the head, ears, neck, wing bases, base of the feet, and toes using tweezers. In addition, the bats were carefully combed to collect additional samples of ectoparasites remaining in their fur. The ectoparasites collected were then placed in collecting tubes containing 95% alcohol. Before release, bats were marked on the head with a permanent marker to avoid resampling. All collected ectoparasites were subsequently sorted, identified, counted, mounted on microscope slide, and deposited for further study in the Laboratory Biology Center, National Research and Innovation Agency. Specimens were taxonomically identified using the taxonomic keys by [25,26].

**Results and Discussion**

*Eonycteris spelaea*

*Eonycteris spelaea* species were found in all caves chosen as research sites. Based on the result of morphological measurements (Tab. 1), it is known that each individual bat found in each habitat has a unique characteristic regarding its size. The result of morphology analysis of 42 specimens captured shows that there are 2 groups that have similar measurement results. The first group consists of bats found in Gale-Gale cave and Buwun cave, whereas the second group consists of bats found in Tanjung Ringgit cave and Gunung Tunak cave.

The bats found in Gale-Gale cave and Buwun cave have similar sizes of forearm which are 78.8 mm and 74.9 mm, respectively. Moreover, the sizes

<table>
<thead>
<tr>
<th>Ectoparasites</th>
<th>Tanjung Ringgit cave</th>
<th>Gale-Gale cave</th>
<th>Buwun cave</th>
<th>Gunung Tunak cave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insecta</td>
<td>G. sundaica</td>
<td>1</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>Diptera, Nycteribiidae</td>
<td>G. horsfieldii</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Siphonaptera, Ischnopsyllida</td>
<td>T. breviceps</td>
<td>–</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>Arachnida</td>
<td>I. hexactenus</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ixodida, Ixodida</td>
<td>A. sp.</td>
<td>12</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>Mesostigmata, Spinturnicida</td>
<td>A. sp.</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Amblyomma sp.</td>
<td>M. sp.</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Bats sampling

Bat specimens (n=42) were collected using the trapping trap method with a mist net installed at the mouth of the four cave. The sampling was carried out when the bats came out of the cave at 18.30–19.00 WITA (Central Indonesian Time). Captured bats were removed from the net with a gloved hand and transferred into a cotton cloth bag for transport to the nearby processing station for morphometric measurements and identification using morphological criteria by [23,24].
of their tibias are also similar, with the value of 16.1 mm and 16.7 mm. Meanwhile, the bats in Tanjung Ringgit cave and Gunung Tunak cave also show similar morphological sizes of the forearm (FA) which are 65.9 mm and 67.5 mm, and similar calf sizes (TB) with a length of 32.4 and 32.7 mm, respectively. Long and strong arms are very beneficial to support flying ability of this species. Long hind legs really help them to grip when nesting [27].

In general, ectoparasites will live on the surface of the skin of bats to meet their needs. ectoparasites will use the fur on the surface of the bat’s body for shelter. The presence of ectoparasites in the bat’s body is closely related to the condition of the bat’s body. Some references mentioning that bats with a better body condition or nutritional status will be able to increase the abundance of ectoparasites in bat bodies [28,29]. Tai et al. [30] mentioned that the abundance of the bat lies N. allotopa and A. speiserianum on the bat M. fuliginosus tended slightly towards bats of moderate or higher body condition, particularly reproductive females and adult males in the wet season.

Biological differences between age and sex in host species also appear to contribute to the prevalence of ectoparasites in bat bodies [22], and adults with higher BBCI may have relatively more surface area to support increased numbers of ectoparasites [31].

In this study, ectoparasites were mostly found on the bats body (60%), while 40% were found on wings. Also, species with dense fur had larger number of ectoparasites compared to others with thin fur. The abundance, intensity, and prevalence of ectoparasites in bats are influenced by a range of variables including, morphology, habitat [32], gender, nesting, grooming [33], social behavior [34,35], diet [36] and body size [37].

**Ectoparasites of Eonycteris spelaea**

According to the result of the identification of ectoparasites collected from 42 specimens of *Eonycteris spelaea* in 4 caves in Lombok Island (Tab. 2), it is found that there are 7 types of ectoparasites consisting of 4 species from the class Insecta (2 species from the order Diptera, namely *Eucampisopoda sundaica* and *Cyclopodia horsfieldii* and 2 species from the order Siphonaptera namely *Ischnopsyllus hexactenus* and *Thaumapsylla breviceps*), and 3 species from the class Arachnida (*Amblyomma* sp., *Ancylostropus* sp., and *Meristaspis* sp.).

**Eucampisopoda sundaica.** Body size is 5 mm, has a brown dorsal body, a flat body shape dorsoventrally, no wings, abdomen and legs covered with setae hair, claws on the tips of the feet, a head that can be folded towards the thorax, and femur and tibia nearly equal in length. The eye has a single elliptical lens. Small head, pentagon-shaped chest. Clasper short and tapered and hair on the lateral. The femur has a white ring and the tibia has two white rings [26]. *Eucampisopoda sundaica* was found in bat species *E. spelaea* and *R. amplexicaudatus* [38,39]. In addition, *E. sundaica* has also been found infecting *Rousettus leschenaultia* and *Che rephon aplicata* [40,41]. *Eucampisopoda sundaica* has been reported infecting *Eonycteris spelae*a bats found in two places on the Lombok Island, namely in Tanjung Ringgit cave and Gale-Gale cave. *Eucampisopoda sundaica* has also been found in *E. spelaea* bats in Gunung Reng, Jeli, Kelantan, Tioman Island Wildlife Reserve, Pahang, Wang Kelian State Park, Perlis [41], Yunnan Province of China at the Sino-Burmese border [40].

**Cyclopodia horsfieldii.** Body size is 6 mm. *C. horsfieldii* has a non-angled sterna plate with a curved tip. On the ventral side, white sutures diagonally across the abdomen are clearly visible. Thorn-like structures called ctenidia are clearly visible on thorax and abdomen. The head folds ventrally and can rotate 180°. White segmentation on the abdomen is clearly visible, and abdomen is also covered with setae [42]. *Cyclopodia horsfieldii* is commonly found in bat from genus *Cynopterus*. However, its presence has also been reported in *Pteropus, Acerodon* and *Rousettus* Gray bats, new host records including *Cynopterus brachyotis* and *Ptenochirus jagori* [43]. In addition, research conducted by Fajri et al. [44] stated that *Cyclopodia horsfieldii* was found in bat species *Eonycteris spelaea*, *Rousettus amplexicaudatus* and *Miniopterus pusillus*. *Cyclopodia horsfieldii* has been found in four locations on the Lombok Island, namely the Gale-Gale cave, Tanjung Ringgit cave, Buwun cave and Gunung Tunak cave. Also, in Philippines including Luzon, Mindoro, Busuanga, Cagayan, Palawan, Balabac, Leyte, Iloilo, Panay, Guimaraes, Camiguin, Mindanao, Negros and Jolo [39,45,46]. In addition, this species has also been found around the mountains in Indonesia, Cambodia, Malaysia, Thailand and Timor Leste [39].

**Thaumapsylla breviceps.** Body size is 6 mm. *T. breviceps* is a flea from the order Siphonaptera belonging to Ischnopsyllidae family. *Ischno-
psyllidae family is a family with the highest number of species infecting bats [47]. *T. breviceps* is classified into subfamily Thaumopsyllinae, the newest subfamily known as fleas that infect bats. *T. breviceps* has shorter head compared to all identified fleas and has a very short pronotum (separated from the ctenidium) [48]. According to several studies of ectoparasites, it is known that *T. breviceps* has a narrow ectoparasite-host relationship. *T. breviceps* is only found in fruit-eater bats such as *Rousettus amplexicaudatus* [46] and *Eonycteris spelaea* [44].

Three *Thaumopsylla breviceps* were found in this study. This ectoparasite is found on the body of *E. spelaea* in the Gale-Gale cave and Gunung Tunak cave. Populations of *Thaumopsylla breviceps* have been found in southern Africa [49], southern China [50]. In addition, its distribution is also widely found in Indonesia [44], Ethiopian region and Philippines-Mindoro [46,49].

*Ischnopsyllus hexactenus*. Although bat lice belong to different families, they are generally similar to fleas that infect cats, dogs and other mammals. They are often seen as small oval shapes, move quickly through bat fur and are difficult to catch without a quick reaction. Like all fleas, only adults that become the hosts: egg and larval stages are found in the detritus on which bats roost. This study, *Ischnopsyllus hexactenus* have body size 5 mm. *Ischnopsyllus hexactenus* is one of the lice specifically found in bats, and is not found in other mammal species. Bats that have served as hosts for *I. hexactenus* are *Myotis frater*, *Murina hilgendorfi*, *Pipistrellus pipistrellus* and *R. microphyllum* [44]. *I. hexactenus* is an ectoparasite that can be a vector of several zoonotic pathogens such as trypanosomes. The abundance of *I. hexactenus* in bats is quite high, and *I. hexactenus* is even being able to make bats as the sole host. *Ischnopsyllus hexactenus* has been found in four locations on the Lombok Island: the Gale-gale cave, Tanjung Ringgit cave, Buwun cave and Gunung Tunak cave. The distribution of this species broad enough, among others in Caribbean and Africa [55], Brazil [56], Southwest Georgia and Northwest Florida, USA [57].

*Ancystropus sp.* *Ancystropus sp.* is a mite from the family Spinturnicidae which has very enlarged legs I and claws I. It usually has 2–3 pairs of setae surrounding the anterior border of the dorsal shield, slender distal setae on tarsus I, three pairs of setae surrounding the anterior border of the dorsal shield, epigynial shield located at the level of coxa IV, no lateral hooks on tarsus I and coxa I [25]. *Ancystropus sp.* have body size 1.5 mm. The existence of *Ancystropus sp.* has been reported infesting several bats including *Rousettus leschenaulti* (Pteropodidae), *Rhinochlorhynchus rouxi* and *Hipposideros sporis* (Rhinolophidae). In addition, it has also been found in the species of *Eonycteris spelaea*. Most of *Ancystropus sp.* is found on the wing membranes of bats. In this study, twenty-two *Ancystropus sp.* were found in the four observation sites on Lombok Island. The distribution of *Ancystropus sp.* infesting several bats has been found in some caves in Sri Lanka, Indonesia, Philippines, and Thailand.

*Meristaspis sp.* *Meristaspis sp.* has body size 2 mm and is characterized by 4 pairs of setae surrounding the anterior border of the dorsal shield. Tarsus I has a pair of large distal setae, flat distal setae, no enlarged claws I; large tritosternum usually dilated, epigynial shield at coxa III-IV, anal shield which has no postanal seta, enlarged leg I, but no enlarged claw [25]. Hosts are bats belonging to
Megachiroptera including *Eonycteris spelaea*, *Macroglossus minimum*, *Rossettus amplixicaudatus* [44], and *Rousettus aegyptiacus* [58]. Nineteen *Meristaspis* sp. has been found in four locations on the Lombok island: the Gale-gale cave, Tanjung Ringgit cave, Buwun cave and Gunung Tunak cave.

In conclusion, the result of this study shows that the *Eonycteris spelaea* species are distributed in all caves in Lombok Island. Based on the result of morphological measurements, there are differences in morphology of *E. spelaea* species found in each location. *E. spelaea* are infested with seven ectoparasite species consisting of 4 species from the class *Insecta* which are 2 species from the order Diptera (*Eucampstipoda sondaica* and *Cyclopodida horsfieldii*) and 2 species from the order Siphonaptera (*Ischnopsyllus hexactenus* and *Thaumapsylla*); and 3 species from the class *Arachnida* (*Amblyomma sp.*, *Ancystropus sp.*, and *Meristaspis sp.*). It is also addressed that there are several ectoparasites that are quite dangerous for humans and other animals found infecting *E. spelaea* These ectoparasites can cause several types of diseases. Thus, it is necessary to carry out special care and to give attention to this species of bat.

Acknowledgements

We would like to thank the Ministry of Education, Culture, Research and Technology, the Directorate General of Higher Education, Research and Technology for fully funding this research. We also thank the foundation, rector and LPPM of Mandalika University of Education for facilitating us so that we could carry out and complete this research.

References


of Medical Entomology 48(4): 753–757. doi:10.1603/ME09133


Received 07 March 2022
Accepted 28 September 2022