Original papers # Seroprevalence of *Toxoplasma gondii* among patients with schizophrenia and bipolar disorder in Upper Egypt: a comparative study with a control group Enas A.M. Huseein¹, Hossam Khalifa², Gilan K. Ramadan², Shehab H. Hassaan^{2,3}, Islam Shaaban⁴, Haiam Farrag^{1,5} Corresponding Author: Haiam M.M. Farrag; e-mail: hayammahmoud@su.edu.sa **ABSTRACT.** Schizophrenia and bipolar disorder are serious neuropsychiatric disorders. Studies have found a high seroprevalence of *Toxoplasma gondii* in psychiatric patients. This study aimed to estimate the seroprevalence of *T. gondii* infection among schizophrenia and bipolar disorder patients. A case-control study was conducted in Assiut University Hospitals on 53 patients with schizophrenia, 57 patients with bipolar disorder, and 50 healthy volunteers. The psychiatric patients were recruited from the psychiatry department and the controls from their relatives. Both groups were subjected to socio-demographic assessment. Neither of them was immunodeficient nor with any other psychiatric disorders. Anti-*Toxoplasma* IgG antibodies were detected by indirect-ELISA to find the relationship between *T. gondii* infection and psychiatric disorders. Data were analysed using Chi-square test. The seropositivity rate, among patients with schizophrenia (50.9%) and patients with bipolar disorders (52.6%), was significantly higher than control group (30%) (P = 0.031 and 0.018 respectively). We found no statistically significant difference among all groups regarding environmental risk factors associated with *T. gondii* infection, except cat contact which was higher in schizophrenia and bipolar disorder patients (P = 0.011 and 0.007 respectively). The results of our study confirm that *T. gondii* infection is significantly correlated with schizophrenia and bipolar disorder and significantly associated with cat contact rather than beef consumption. Keywords: schizophrenia, Toxoplasma, bipolar disorder, seroprevalence, Egypt, ELISA #### Introduction Schizophrenia and bipolar disorder are major, chronic, and often debilitating neuropsychiatric disorders with a significant negative impact on the social environment and the quality of patients' life and their families [1,2]. Schizophrenia is characterized by relapsing episodes of psychosis with effects on thought, perception, emotion, and behaviour [3]. It is challenging and currently affects over 21 million people worldwide; it has been estimated that approximately seven individuals per 1000 will develop schizophrenia disorder during their lifetime [4]. Bipolar disorder is a primary mood disorder, in which episodes of hypomania, mania, or mixed episodes occur. Several studies have estimated its lifetime prevalence to range from 3–8% [5-7]. In Egypt, mental disorders represent a huge challenge to health workers. The most recent study was conducted in 2009 and aimed to determine the prevalence of different mental disorders in Egypt. This study concluded that 17% of Egyptians suffered from some kind of mental illness [8]. As a common intracellular organism, *Toxoplas-ma gondii* has a variable prevalence world widely. ¹Department of Parasitology, Faculty of Medicine, Assiut University, Egypt ²Department of Psychiatry, Faculty of Medicine, Assiut University, Egypt ³Sulaiman Alrajhi Colleges, El-Qassim, Saudi Arabia ⁴Department of Neuropsychiatry, Faculty of Medicine, Azhar University, Egypt ⁵Faculty of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia The prevalence of infection with *T. gondii* is 30–60% of the population in both developed and developing countries [9]. *T. gondii* tissue cysts found in undercooked meat and oocytes containing sporozoites found in water, soil, and children sandboxes, are common routes for human infection. On the other hand, congenital toxoplasmosis may occur through the trans-placental transmission of trophozoites from the mother to the foetus during pregnancy [10]. It usually causes asymptomatic latent infections, except during pregnancy or in immunocompromised patients [11]. The parasite has a complex life cycle, whereby it needs to end up in the intestines of cats (felines) to be able to sexually reproduce [12]. In other hosts than cats (intermediate hosts, all warmblooded animals), it invades the body after ingestion, whereby it quickly duplicates until the immune system of the host subdues the parasite [13]. The parasite then forms intracellular cysts in muscles, liver, and neuronal cells to reside in a latent stage potentially for the rest of the host's life [14]. Many researches have shown that behavioural changes in mice and humans can be the result of latent toxoplasmosis [15,16]. Moreover, there is substantial evidence suggesting increased prevalence of *T. gondii* infection in schizophrenia. Multiple studies showed that patients with schizophrenia have 2.7 odds ratio (OR) of being seropositive to *T. gondii* in comparison to healthy controls [3,17]. To explain causality, many theories have been postulated to clarify this association. First, Prandovszkyet al. [18] showed that T. gondii may increase dopamine production in vitro. Second, T. gondii infection induced-immune response in patients with schizophrenia has been suggested to lead to dangerous effects [19,20]. An extensive literature demonstrating immunological normalities in psychoses is available, including changed serum levels of cytokines in schizophrenia patients [21], changes in the immune-modulatory kynurenine pathway enzymes [22,23], in vivo glial cells activation and injury [24], the antipsychotics immunosuppressive and/or anti-infectious effects [25], and activation of human endogenous retrovirus [26]. T. gondii infection causes alteration of the structure and function of corticolimbic circuits, which are involved in the modulation of impulsivity and aggression, this might be another explanation for behavioural changes observed in infected animals and humans [27,28]. Dopamine and immunological disturbances are not unique to schizophrenia. Both have been reported in other psychiatric disorders [29–33]. Therefore, *T. gondii* could be involved in other psychiatric disorders besides schizophrenia. Associations of *T. gondii* infection with other psychiatric disorders, such as bipolar disorder [34] and obsessive-compulsive disorder (OCD) [35], have been reported. The correlation between the presence of *T. gondii* IgG antibodies and schizophrenia varies between different studies. Whether the *T. gondii* infection happens before the mental illness and whether the seriousness of the disease is an important factor, are still topics for discussion and debate [36]. We think that this study was the first to be conducted in Upper Egypt to explore further the association between *Toxoplasma* infection and psychiatric disorders especially, schizophrenia and bipolar disorders. It compared the amount of anti-*Toxoplasma* IgG antibodies among patients with schizophrenia, bipolar disorders and non-schizophrenia control group by ELISA. #### **Materials and Methods** Study design and subjects. The study was conducted at Assiut University Hospitals, Egypt. The present study was conducted over 6 months from Feb to July 2016. This case-control study was conducted on a total of one hundred-ten patient divided into (53) patients with schizophrenia and (57) patients with bipolar disorder. The other group of population is the control group which consisted of (50) healthy volunteers. The psychiatric patients were recruited from the psychiatry department and the controls from the relatives of the patients and other medical departments. Both groups were matched in terms of age, gender, race and socioeconomic status. The inclusion criteria included patients aged 18 to 60 years. The subjects of two groups were not immune-deficient and did not have any other major psychiatric disorder or neurological disease other than bipolar disorder or schizophrenia. All subjects singed informed consent before participation in the study. The patients' diagnosis was made by a psychiatrist through structured clinical interview for Diagnostic and Statistical Manual of mental disorders, 4th edition (DSM-IV-TR) [37]. The mean age for patients' group was (34.65 ± 12.93) and for the control was (33.66 ± 12.89) . The objectives and procedures of Table 1. Sociodemographic characteristics of schizophrenia patients, bipolar disorder patients and control groups | | Schizophrenia (n=53) | | Mood diso | Mood disorder (n=57) | | Control (n=50) | | |--------------------|----------------------|---------|-----------|----------------------|---------|----------------|--------| | | No. | % | No. | % | No. | % | | | Age: | | | | | | | | | < 30 years | 26 | 26 | 49.1 | 31 | 54.4 | 22 | | | 30 - < 40 years | 14 | 14 | 26.4 | 19 | 33.3 | 17 | 0.722 | | 40 - < 50 years | 7 | 7 | 13.2 | 4 | 7.0 | 6 | 0.733 | | > 50 years | 6 | 6 | 11.3 | 3 | 5.3 | 5 | | | mean ± SD | 34.65 | ± 12.93 | 35.42 | ± 11.32 | 33.66 : | ± 12.89 | 0.6457 | | Sex: | | | | | | | | | male | 42 | 79.2 | 44 | 77.2 | 37 | 74.0 | 0.017 | | female | 11 | 20.8 | 13 | 22.8 | 13 | 26.0 | 0.817 | | Educational level: | | | | | | | | | illiterate | 12 | 22.6 | 20 | 35.1 | 15 | 30.0 | | | read & write | 6 | 11.3 | 6 | 10.5 | 9 | 18.0 | | | basic education | 12 | 22.6 | 7 | 12.3 | 10 | 20.0 | 0.685 | | secondary | 18 | 34.0 | 19 | 33.3 | 12 | 24.0 | | | high education | 5 | 9.4 | 5 | 8.8 | 4 | 8.0 | | | Occupation: | | | | | | | | | farmer | 7 | 13.2 | 12 | 21.1 | 5 | 10.0 | | | employer | 11 | 20.8 | 5 | 8.8 | 12 | 24.0 | | | skilled worker | 10 | 18.9 | 24 | 42.1 | 12 | 24.0 | 0.002* | | no work | 19 | 35.8 | 4 | 7.0 | 13 | 26.0 | | | housewife | 6 | 11.3 | 12 | 21.1 | 8 | 16.0 | | | Residence: | | | | | | | | | rural | 37 | 69.8 | 39 | 68.4 | 35 | 70.0 | 0.001 | | urban | 16 | 30.2 | 18 | 31.6 | 15 | 30.0 | 0.981 | | Marital status: | | | | | | | | | single | 32 | 60.4 | 34 | 59.6 | 30 | 60.0 | | | married | 16 | 30.2 | 19 | 33.3 | 15 | 30.0 | 0.000 | | divorced | 4 | 7.5 | 3 | 5.3 | 4 | 8.0 | 0.998 | | widow | 1 | 1.9 | 1 | 1.8 | 1 | 2.0 | | | Social class: | | | | | | | | | low | 6 | 11.3 | 2 | 3.5 | 5 | 10.0 | | | middle | 41 | 77.4 | 49 | 86.0 | 40 | 80.0 | 0.612 | | high | 6 | 11.3 | 6 | 10.5 | 5 | 10.0 | | ^{*:} significant at P<0.05 the research were explained to the subjects. Since this study involves invasive procedures, a written consent form was filled up by respondents before the blood samples were collected. Approval was granted by the ethical committee of Faculty of Medicine, Assiut University, with an ethical approval number; R15. Socioeconomic assessment scale for family. We gathered information about socio-demographic information using this scale, which prepared by Professor Abdel Tawab Abdullah, Faculty of Education, Assiut University, in 1998 and modified in 2010. It includes four main variables: 1) the educational level of the father and mother; 2) the occupation; 3) total family income; 4) life style of the family [38]. Putative risk factors comprised cat contacts, meat consumption (red meat, chicken, and fish), and wash hands before eating, wash hands after toilet, working in gardens [39]. **Serological assays.** To examine the relationship between the presence of immunoglobulin G (IgG) antibodies against *T. gondii* and schizophrenia or mood disorders, 5 ml blood from all studied individuals were collected by venipuncture under | | NI. | Ge | nder | Age (year) | ELISA positive | | D 37.1 | |---------------|-----|------|--------|-------------------|----------------|------|---------| | | No. | Male | Female | (M±SD) | No. | % | P-Value | | schizophrenia | 53 | 44 | 13 | 34.65 ± 12.93 | 27 | 50.9 | 0.021* | | control | 50 | 37 | 13 | 33.66 ± 12.89 | 15 | 30 | 0.031* | ^{*:} significant at P<0.05 sterile conditions and sent to the Parasitology Laboratory of Assiut University, Faculty of Medicine. Serum samples were obtained by the centrifugation (at 3000 rpm for 10 min) of collected blood and kept at –20°C pending ELISA tests [40]. Sera were analysed by qualitative and quantitative methods for *T. gondii* IgG antibodies with the commercially available enzyme immunoassay kit "*Toxoplasma* IgG" (Prechek Bio, Inc., CA 92801, USA) and final results were recorded by ELISA reader (optical absorbance, OD=450). **Statistical analysis.** SPSS software ver. 20 was used for analysis. Age among the groups was compared by the student's t-test. Chi-square analysis was performed to compare the seroprevalence of anti-*Toxoplasma* IgG antibodies among schizophrenia, mood disorder patients and controls. Adjusted Odds Ratio (OR) and 95% confidence interval (CI) were calculated by multivariate analysis using conditional logistic regression, thus determining the level of risk involved in the study putative environmental risk factors and the subsequent association with *T. gondii* seropositivity. A value of P<0.05 was considered statistically significant. #### Results #### Socio-demographic characteristics Table 1 shows the sociodemographic characteristics of the study and the control groups. The overall number of the individuals in the study group was 110 patients, 53 with schizophrenia and 57 with bipolar disorder. The mean age was $34.65 \pm$ 12.93 and 35.42 ± 11.32 for schizophrenia and bipolar patients respectively. About 80% of them are males and 20% are females. Nearly 30% of them live in urban areas and 70% live in rural areas. Their occupations varied between farmers 17.3%, employers 14.5%, skilled workers 30.9%, housewives 16.4% and not working 20.9%. 7.3% of the study group belonged to the high socioeconomic status group, 81.8% belonged to the moderate socioeconomic status group and 10.9% belonged to the low socioeconomic status group. Comparison between sociodemographic data of control and study group shows no statistically significant difference between the study and control groups in terms of age, gender, residence, educational level, and socioeconomic status. There are only significant differences between the study and control groups in terms of occupation (P = 0.002). #### Anti-Toxoplasma antibody seroprevalence Total, 53 cases with schizophrenia and 50 control individuals were compared for the anti-*Toxoplasma* antibody by ELISA. The difference of anti-*T. gondii* antibodies between schizophrenia patients (50.9%, 27 out of 53 patients) and control group (30%, 15 out of 50 patients) was statistically significant (P = 0.031) (Table 2). 57 cases with bipolar disorder and 50 control individuals were compared for anti-*Toxoplasma* antibody by ELISA. The difference of the anti-*T. gondii* antibodies between bipolar patients (52.6%, 30 out of 57 patients) and control Table 3.Distribution of anti-Toxoplasma antibodies by ELISA in bipolar patients and control individuals | | No. | Gender | | Age (year) | ELISA positive | | P-Value | |------------------|-----|--------|--------|-------------------|----------------|------|---------| | | | Male | Female | (M±SD) | No. | % | | | bipolar disorder | 57 | 42 | 11 | 35.42 ± 11.32 | 30 | 52.6 | 0.010* | | control | 50 | 37 | 13 | 33.66 ± 12.89 | 15 | 30 | 0.018* | ^{*:} significant at P<0.05 | Type of schizophrenia | | Toxopla | sma test | | | | |-----------------------|----------|----------|----------|---------|-------|--| | | Positive | e (n=27) | Negativ | P-value | | | | | No. | % | No. | % | | | | paranoid | 20 | 58.8 | 14 | 41.2 | | | | disorganized | 4 | 44.4 | 5 | 55.6 | 0.440 | | | undifferentiated | 2 | 33.3 | 4 | 66.7 | 0.440 | | | catatonic | 1 | 100 | 0 | 0.0 | | | Table 4. Results of *Toxoplasma* test according to the type of schizophrenia in the studied patients group (30%, 15 out of 50 patients) was statistically significant (P = 0.018) (Table 3). The seropositivity rate for anti-*T. gondii* IgG antibodies in patients compared with the control group showed a possible relationship between *Toxoplasma* infection on one hand and schizophrenia, bipolar disorder on the other hand. As regards to the seropositivity prevalence for anti-T. gondii IgG antibodies among different types of schizophrenia, we found no statistically significant difference between these types (χ (1) = 0.597, P = 440) (Table 4). ## Effect of environmental and sociodemographic variables The comparison between schizophrenia, bipolar disorder and control groups regarding putative environmental risk factors associated with *T. gondii* infection such as cat contacts, meat consumption (red meat, chicken, fish), wash hands before eating, wash hands after toilet and working in gardens, showed no statistically significant difference between the three groups except in cat contact which was higher in schizophrenia and bipolar disorder patients (P = 0.011 and 0.007 respectively) (Table 5). There is also no statistically significant difference between those with positive ELISA results and those with negative ELISA results regarding the studied sociodemographic characters: age, sex, educational level, occupation, residence and social class (Table 6). #### **Discussion** The present study was conducted to evaluate the Table 5. Comparison between schizophrenia, bipolar disorder and control groups regarding putative environmental risk factors associated with *T. gondii* infection | | Schizophr | enia (n=53) | Mood diso | order (n=57) | Contro | ol (n=50) | P1 | P2 | Р3 | |-------------|-----------|-------------|-----------|--------------|--------|-----------|-------|--------|--------| | | No. | % | No. | % | No. | % | | | | | smoking | 36 | 67.9 | 40 | 70.2 | 34 | 68.0 | 0.799 | 0.933 | 0.808 | | WHBF | 34 | 64.2 | 45 | 78.9 | 33 | 66.0 | 0.085 | 0.844 | 0.133 | | WHAT | 35 | 66.0 | 45 | 78.9 | 34 | 68.0 | 0.129 | 0.832 | 0.199 | | WIG | 18 | 34.0 | 29 | 50.9 | 17 | 34.0 | 0.073 | 0.997 | 0.079 | | cat contact | 25 | 47.17 | 27 | 47.3 | 11 | 22.0 | 0.488 | 0.011* | 0.007* | | other M: | | | | | | | | | | | chicken | 19 | 35.8 | 21 | 36.8 | 19 | 38.0 | | | | | fish | 12 | 22.6 | 8 | 14.0 | 10 | 20.0 | 0.570 | 0.077 | 0.502 | | red meat | 5 | 9.4 | 9 | 15.8 | 4 | 8.0 | 0.570 | 0.977 | 0.592 | | all | 17 | 32.1 | 19 | 33.3 | 17 | 34.0 | | | | ^{1:} Comparison between schizophrenia and mood disorder; 2: Comparison between chizophrenia and control; 3: Comparison between mood disorder and control; *: significant at P<0.05 Table 6. Results of *Toxoplasma* test according to sociodemographic characteristics in the studied patients | | Toxoplasma test | | | | | | |--------------------|-----------------|---------|---------|-----------|-------|--| | | Positiv | e(n=57) | Negativ | re (n=53) | | | | | No. | % | No. | % | | | | Age: | | | | | | | | < 30 years | 29 | 50.9 | 28 | 49.1 | | | | 30 - < 40 years | 17 | 51.5 | 16 | 48.5 | 0.803 | | | 40 - < 50 years | 5 | 45.5 | 6 | 54.5 | 0.803 | | | > 50 years | 6 | 66.7 | 3 | 33.3 | | | | Sex: | | | | | | | | male | 46 | 53.5 | 40 | 46.5 | 0.507 | | | female | 11 | 45.8 | 13 | 54.2 | 0.507 | | | Educational level: | | | | | | | | illiterate | 17 | 53.1 | 15 | 46.9 | | | | read & write | 5 | 41.7 | 7 | 58.3 | | | | basic education | 10 | 52.6 | 9 | 47.4 | 0.378 | | | secondary | 17 | 45.9 | 20 | 54.1 | | | | high education | 8 | 80.0 | 2 | 20.0 | | | | Occupation: | | | | | | | | farmer | 8 | 42.1 | 11 | 57.9 | | | | employer | 9 | 56.3 | 7 | 43.8 | | | | skilled worker | 21 | 61.8 | 13 | 38.2 | 0.582 | | | no work | 10 | 43.5 | 13 | 56.5 | | | | housewife | 9 | 50.0 | 9 | 50.0 | | | | Residence: | | | | | | | | rural | 34 | 44.7 | 42 | 55.3 | 0.056 | | | urban | 23 | 67.6 | 11 | 32.4 | 0.036 | | | Social class: | | | | | | | | low | 5 | 62.5 | 3 | 37.5 | | | | middle | 45 | 50.0 | 45 | 50.0 | 0.709 | | | high | 7 | 58.3 | 5 | 41.7 | | | association between Toxoplasma infection and schizophrenia and bipolar disorder. Our results showed a higher seroprevalence of anti-T. gondii IgG antibodies in schizophrenia and bipolar disorder patients than in controls matched by age, gender and race, thus confirming results of many recent studies e.g. [41–44]. On the other hand, few studies did not find the contamination with Toxoplasma gondii as a risk factor for bipolar disorder [7]. Torrey et al. [17] was the first study to investigate the possible role of T. gondii antibodies in 1953. They found that nearly half of the psychiatric patients enrolled in their study had T. gondii antibodies in comparison to only 25% of the control group. Moreover, they found significantly higher levels of IgG antibodies in psychiatric patients in comparison to controls. These results are following serological studies on patients with schizophrenia which showing that anti-T. gondii antibodies were higher in patients than control groups [39,45,46]. This study showed an association between *T. gondii* exposure and the risk of BD and schizophrenia which agrees with several literatures conducted in the recent years [33,46–50] The relationship between *T. gondii* antibodies and mood disorders was investigated in a big cross-sectional study conducted on a population-based sample in the United States. The study reported that *T. gondii* seroprevalence is higher in patients with a history of bipolar disorder type 1, but is not elevated in unipolar mood disorders patients [46]. There are some possible explanations for our results. Some studies reported that in patients with encephalitis due to *T. gondii* infection, trophozoites were abundantly present in the glial cells of those patients [10,51]. Other studies that investigated toxoplasmic encephalitis, found *T. gondii* bradyzoites in the cerebellar Purkinje cells [10,52]. Additionally, other studies detected *T. gondii* cysts in astrocytes in humans [10,53]. Another possible explanation is that neurotransmitters, such as dopamine and norepinephrine, might be affected by toxoplasmosis which affects schizophrenic people as well [54,55]. We found also, a positive association between cat contact and T. gondii infection in both schizophrenia and bipolar patients (P = 0.011 and 0.007 respectively). This suggests that infection might be acquired by cleaning cat excrement containing the parasites. Association between T. gondii seropositivity and cat contact was also found in studies done by Alvarado Esquivel et al. [43] in which cleaning cat excrement was significantly associated with T. gondii infection (P = 0.001). We did not find an association between *T. gondii* infection and other studied behavioural characteristics including meat consumption (beef meat, chicken or fish). This can be explained by the fact that Egyptian people, especially middle and low social class, mostly prefer to consume different types of meat in a very well-cooked manner. This agrees with the fact that, in humans, *T. gondii* is commonly acquired by the oral ingestion of tissue cysts containing bradyzoites, through the consumption of undercooked meat infected with *T. gondii* [56,57]. The results of our study confirm recent findings that T. gondii infection is significantly associated with schizophrenia and bipolar disorder. Toxoplasmosis might be a very serious but ignored public health problem. This study throws light on the assumption that T. gondii is a risk factor for schizophrenia. The results also show that T. gondii is not significantly associated with beef consumption. We think that the Egyptian way of eating the meat well-cooked is a protective factor. Our limitations included a relatively lower sample size. Nonetheless, these findings are essential in establishing an association between T. gondii and psychiatric disorders in Egypt. We recommend larger studies to confirm a significant association and to establish a clearer relationship between T. gondii infection and psychiatric patients in Egypt. #### Acknowledgements We would like to express special appreciation and thanks to Dr. Doaa A. Yones, Professor of Medical Parasitology, Faculty of Medicine, Assiut University for her help and effort to establish the present work. #### References - [1] Medeiros-Ferreira L.J.E., Obiols J., Navarro-Pastor Zuniga-Lagares A. 2013. Metabolic syndrome and health-related quality of life in patients with schizophrenia. *Actas Espanolas de Psiquiatria* 41:17-26 - [2] Crump C., Sundquist K., Winkleby M.A., Sundquist J. 2013. Comorbidities and mortality in bipolar disorder: a Swedish national cohort study. *JAMA Psychiatry* 70: 931. - [3] Torrey E.F., Bartko J.J., Lun Z.R., Yolken R.H. 2007. Antibodies to *Toxoplasma gondii* in patients with schizophrenia: a meta-analysis. *Schizophrenia Bulletin* 33: 729-736. doi:10.1093/schbul/sbl050 - [4] Schizophrenia. WHO Mh. WHO 2018. Available from: Schizophrenia. WHOMh. WHO, 2018 Availablefrom: http://www.who.int/mental_health/ management/schizophrenia/en/. - [5] Akiskal H.S. 2009. Mood Disorders. In: Comprehensive text book of psychiatry. (Eds. B.G. Sadock, V.A. Sadock). 9th ed. Williams and Wilkins, Philadelphia, Lippincott: 1629-1839. - [6] Anderson I.M., Haddad P.M., Scott J. 2012. Bipolar disorder. BMJ 345: e8508. doi:10.1136/bmj.e8508 - [7] Khademvatan S., Khajeddin N., Izadi S., Saki J. 2013. Study of *Toxoplasma gondii* infection in patients with bipolar disorder. *Journal of Medical Sciences* 13: 215-220. doi:10.3923/jms.2013.215.220 - [8] Ghanem M., Gadallah M., Meky F.A., Mourad S., El-Kholy G. 2009. National survey of prevalence of mental disorders in Egypt: a preliminary survey. *Eastern Mediterranean Health Journal* 15: 65-75. - [9] Dubey J.P., Lago E.G., Gennari S.M., Su C., Jones J.L. 2012. Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. *Parasitology* 139: 1375-1424. doi:10.1017/S0031182012000765 - [10] Carruthers V.B., Suzuki Y. 2007. Effects of *Toxoplasma gondii* infection on the brain. *Schizophrenia Bulletin* 33: 745-751. doi:10.1093/schbul/sbm008 - [11] Montoya J.G., Liesenfeld O. 2004. Toxoplasmosis. Lancet 363: 1965-1976. doi:10.1016/S0140-6736(04)16412-X - [12] Afonso C., Paixão V.B., Costa R.M. 2012. Chronic *Toxoplasma* infection modifies the structure and the risk of host behavior. *PLoS One* 7: e32489. doi:10.1371/journal.pone.0032489 - [13] Maubon D., Ajzenberg D., Brenier-Pinchart M.P., Dardé M.L., Pelloux H. 2008. What are the respective host and parasite contributions to toxoplasmosis? *Trends in Parasitology* 24: 299-303. doi:10.1016/j.pt.2008.03.012 - [14] Dubey J.P. 1998. Advances in the life cycle of *Toxoplasma gondii. International Journal for Parasitology* 28: 1019-1024. - doi:10.1016/S0020-7519(98)00023-X - [15] Kocazeybek B., Oner Y.A., Turksoy R., Babur C., Cakan H., Sahip N., Unal A., Ozaslan A., Kilic S., Saribas S., Aslan M., Taylan A., Koc S., Dirican A., Uner H.B., Oz V., Ertekin C., Kucukbasmaci O., Torun M.M. 2009. Higher prevalence of toxoplasmosis in victims of traffic accidents suggest increased risk of traffic accident in *Toxoplasma*infected inhabitants of Istanbul and its suburbs. *Forensic Science International* 187: 103-108. doi:10.1016/j.forsciint.2009.03.007 - [16] Yagmur F., Yazar S., Temel H.O., Cavusoglu M. 2010. May *Toxoplasma gondii* increase suicide attempt-preliminary results in Turkish subjects? *Forensic Science International* 199: 15-17. doi:10.1016/j.forsciint.2010.02.020 - [17] Arias I., Sorlozano A., Villegas E., de Dios Luna J., McKenney K., Cervilla J., GutierrezB., Gutierrez J. 2012. Infectious agents associated with schizophrenia: a meta-analysis. *Schizophrenia Research* 136: 128-136. doi:10.1016/j.schres.2011.10.026 - [18] Prandovszky E., Gaskell E., Martin H., Dubey J.P., Webster J.P., McConkey G.A. 2011. The neurotropic parasite *Toxoplasma gondii* increases dopamine metabolism. *PLoS One6*: e23866. doi:10.1371/journal.pone.0023866 - [19] Carter C.J. 2009. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and *Toxoplasma gondii*. *Schizophrenia Bulletin* 35: 1163-1182. doi:10.1093/schbul/sbn054 - [20] Flegr J., Stříž I. 2011. Potential immunomodulatory effects of latent toxoplasmosis in humans. BMC Infectious Diseases 11: 274. doi:10.1186/1471-2334-11-274 - [21] Miller B.J., Buckley P., Seabolt W., Mellor A., Kirkpatrick B. 2011. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. *Biological Psychiatry* 70: 663-671. doi:10.1016/j.biopsych.2011.04.013 - [22] Myint A.M., Schwarz M.J., Verkerk R., Mueller H.H., Zach J., Scharpé S., Steinbusch H.W., Leonard B.E., Kim Y.K. 2011. Reversal of imbalance between kynurenic acid and 3-hydroxykynurenine by antipsychotics in medication-naive and medication-free schizophrenic patients. *Brain, Behavior and Immunity* 25: 1576-1581. doi:10.1016/j.bbi.2011.05.005 - [23] Notarangelo F.M., Wilson E.H., Horning K.J., Thomas M.A.R., Harris T.H., Fang Q., Hunter C.A., Schwarcz R. 2014. Evaluation of kynurenine pathway metabolism in *Toxoplasma gondii*-infected mice: implications for schizophrenia. *Schizophrenia Research* 152: 261-267. doi:10.1016/j.schres.2013.11.011 - [24] van Berckel B.N., Bossong M.G., Boellaard R., - Kloet R., Schuitemaker A., Caspers E., Luurtsema G., Windhorst A.D., Cahn W., Lammertsma A.A., Kahn R.S. 2008. Microglia activation in recent-onset schizophrenia: a quantitative (*R*)-[¹¹C]PK₁₁₁₉₅ positron emission tomography study. *Biological Psychiatry* 64: 820-822. doi:10.1016/j.biopsych.2008.04.025 - [25]Fond G., Macgregor A., Tamouza R., Hamdani N., Meary A., Leboyer M., Dubremetz J.-F. 2014. Comparative analysis of anti-toxoplasmic activity of antipsychotic drugs and valproate. *European Archives* of Psychiatry and Clinical Neuroscience 264: 179-183. doi:10.1007/s00406-013-0413-4 - [26] Leboyer M., Tamouza R., Charron D., Faucard R., Perron H. 2013. Human endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface. *The World Journal of Biological Psychiatry* 14: 80-90. doi:10.3109/15622975.2010.601760 - [27] Coccaro E.F., Lee R., Groer M.W., Can A., Coussons-Read M., Postolache T.T. 2016. *Toxoplasma gondii* infection: relationship with aggression in psychiatric subjects. *Journal of Clinical Psychiatry* 77: 334-341. doi:10.4088/JCP.14m09621 - [28] Coccaro E.F., Sripada C.S., Yanowitch R.N., Phan K.L. 2011. Corticolimbic function in impulsive aggressive behavior. *Biological Psychiatry* 69: 1153-1159. doi:10.1016/j.biopsych.2011.02.032 - [29] Okusaga O., Postolache T.T. 2012. Chapter 19. *Toxoplasma gondii*, the immune system, and suicidal behavior. In: *The neurobiological basis of suicide*. (Ed. Y. Dwivedi). CRC Press/Taylor and Francis Group, Boca Raton, FL, USA: 381-403. doi:10.1201/b12215 - [30] Reininghaus E.Z., McIntyre R.S., Reininghaus B., Geisler S., Bengesser S.A., Lackner N., Hecht K., Birner A., Kattnig F., Unterweger R., Kapfhammer H.P., Zelzer S., Fuchs D., Mangge H. 2014. Tryptophan breakdown is increased in euthymic overweight individuals with bipolar disorder: a preliminary report. *Bipolar Disorders* 16: 432-440. doi:10.1111/bdi.12166 - [31] Severance E.G., Gressitt K.L., Yang S., Stallings C.R., Origoni A.E., Vaughan C., Khushalani S., Alaedini A., Dickerson F.B., Yolken R.H. 2014. Seroreactive marker for inflammatory bowel disease and associations with antibodies to dietary proteins in bipolar disorder. *Bipolar Disorders* 16: 230-240. doi:10.1111/bdi.12159 - [32] Gray S.M., Bloch M.H. 2012. Systematic review of proinflammatory cytokines in obsessive-compulsive disorder. *Current Psychiatry Reports* 14: 220-228. doi:10.1007/s11920-012-0272-0 - [33] Mesman E., Hillegers M.H., Ambree O., Arolt V., Nolen W.A., Drexhage H.A. 2015. Monocyte activation, brain-derived neurotrophic factor (BDNF), and \$100B in bipolar offspring: a follow-up study from adolescence into adulthood. *Bipolar Disorders* 17: 39-49. doi:10.1111/bdi.12231 - [34] Hamdani N., Daban-Huard C., Lajnef M., Richard J.R., Delavest M., Godin O., LeGuen E., Vederine - F.E., Lépine J.P., Jamain S., Houenou J., Le Corvoisier P., Aoki M., Moins-Teisserenc H., Charron D., Krishnamoorthy R., Yolken R., Dickerson F., Tamouza R., Leboyer M. 2013. Relationship between *Toxoplasma gondii* infection and bipolar disorder in a French sample. *Journal of Affective Disorders* 148: 444-448. doi:10.1016/j.jad.2012.11.034 - [35] Miman O., Mutlu E.A., Ozcan O., Atambay M., Karlidag R., Unal S. 2010. Is there any role of *Toxoplasma gondii* in the etiology of obsessivecompulsive disorder? *Psychiatry Research* 177: 263-265. doi:10.1016/j.psychres.2009.12.013 - [36] Selten J.P., Kahn R.S. 2002. Schizophrenia after prenatal exposure to *Toxoplasma gondii? Clinical Infectious Diseases* 35: 633-634. doi:10.1086/342321 - [37] First M.B., Spitzer R.L., Gibbon M., Williams J.B.W. 1997. Structured clinical interview for DSM-IV Axis I Disorders (SCID-I). American Psychiatric Press Inc., Washington, DC, USA. - [38] Abd El-Tawab AA. 2012. Family socio-economic status scale. *Journal of Faculty of Education, Assiut University* 28: 2-19. - [39] Leweke F.M., Gerth C.W., Koethe D., Klosterkötter J., Ruslanova I., Krivogorsky B., Torrey E.F.., Yolken R.H. 2004. Antibodies to infectious agents in individuals with recent onset schizophrenia. *European Archives of Psychiatry and Clinical Neuroscience* 254: 4-8. doi:10.1007/s00406-004-0481-6 - [40] Bouhamdan S.F., Bitar L.K., Saghir H.J., Bayan A., Araj G.F. 2010. Seroprevalence of *Toxoplasma* antibodies among individuals tested at hospitals and private laboratories in Beirut. *The Lebanese Medical Journal* 58: 8-11. - [41] Hamidinejat H., Ghorbanpoor M., Hosseini H., Alavi S.M., Nabavi L., Jalali M.H. R., Borojeni M.P., Jafari H., Mohammadaligol S. 2010. *Toxoplasma gondii* infection in first-episode and inpatient individuals with schizophrenia. *International Journal of Infectious Diseases* 14: e978-981. doi:10.1016/j.ijid.2010.05.018 - [42] Alipour A., Shojaee S., Mohebali M., Tehranidoost M., Abdi Masoleh F., Keshavarz H. 2011. *Toxoplasma* infection in schizophrenia patients: a comparative study with control group. *Iranian Journal of Parasitology* 6: 31-37. - [43] Alvarado-Esquivel C., Estrada-Martínez S., Pizarro-Villalobos H., Arce-Quiónnes M., Liesenfeld O., Dubey J.P. 2011. Sero-epidemiology of *Toxoplasma gondii* infection in general population in a northern Mexican city. *Journal of Parasitology* 97: 40-43. doi:10.1645/GE-2612.1 - [44] Yolken R.H., Bachmann S., Ruslanova I., Lillehoj E., Ford G., Torrey E.F., Schroeder J. 2001. Antibodies to *Toxoplasma gondii* in individuals with first-episode schizophrenia. *Clinical Infectious Diseases* 32: 842-844. doi:10.1086/319221 - [45] Khademvatan S., Saki J., Khajeddin N., Izadi-Mazidi M., Beladi R., Shafiee B., Salehi Z. 2014. *Toxoplasma gondii* exposure and the risk of schizophrenia. *Jundishapur Journal of Microbiology* - 7: e12776. doi:10.5812/jjm.12776 - [46] Pearce B.D., Kruszon-Moran D., Jones J.L. 2012. The relationship between *Toxoplasma gondii* infection and mood disorders in the third National Health and Nutrition Survey. *Biological Psychiatry* 72: 290-295. doi:10.1016/j.biopsych.2012.01.003 - [47] Khademvatan S., Khajeddin N., Izadi S., Yousefi E. 2014. Investigation of anti-*Toxocara* and anti-*Toxoplasma* antibodies in patients with schizophrenia disorder. *Schizophrenia Research and Treatment* 2014: 230349. doi:10.1155/2014/230349 - [48] Dickerson F., Stallings C., Origoni A., Katsafanas E., Schweinfurth L., Savage C., Khushalani S., Yolken R. 2014. Antibodies to *Toxoplasma gondii* and cognitive functioning in schizophrenia, bipolar disorder, and nonpsychiatric controls. *Journal of Nervous and Mental Disease* 202: 589-593. doi:10.1097/NMD.0000000000000166 - [49] Sutterland A.L., Fond G., Kuin A., Koeter M.W.J., Lutter R., van Gool T., Yolken R., Szoke A., Leboyer M., de Haan L. 2015. Beyond the association. *Toxoplasma gondii* in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. *Acta Psychiatrica Scandinavica* 132: 161-179. doi:10.1111/acps.12423 - [50] Hamdani N., Daban-Huard C., Lajnef M., Gadel R., Le Corvoisier P., Delavest M., Carde S., Lépine J.-P., Jamain S., Houenou J., Galeh B., Richard J.-R., Aoki M., Charron D., Krishnamoorthy R., Yolken R., Dickerson F., Tamouza R., Leboyer M. 2015. Cognitive deterioration among bipolar disorder patients infected by *Toxoplasma gondii* is correlated to interleukin 6 levels. *Journal of Affective Disorders* 179: 161-166. doi:10.1016/j.jad.2015.03.038 - [51] Powell H.C., Gibbs C.J. Jr., Lorenzo A.M., Lampert P.W., Gajdusek D.C. 1978. Toxoplasmosis of the central nervous system in the adult. Electron microscopic observations. *Acta Neuropathologica* 41: 211-216. doi:10.1007/BF00690438 - [52] Bertoli F., Espino M., Arosemena J.R. 5th, Fishback J.L., Frenkel J.K. 1995. A spectrum in the pathology of toxoplasmosis in patients with acquired immunodeficiency syndrome. Archives of Pathology and Laboratory Medicine 119: 214-224. - [53] Ghatak N.R., Zimmerman H.M. 1973. Fine structure of *Toxoplasma* in the human brain. *Archives of Pathology* 95: 276-283. - [54] Sims T.A., Hay J. 1995. Host-parasite relationship between congenital *Toxoplasma* infection and mouse brain: role of small vessels. *Parasitology* 110: 123-127. doi:10.1017/S0031182000063873 - [55] Cetinkaya Z., Yazar S., Gecici O., Namli M.N. 2007. Anti-Toxoplasma gondii antibodies in patients with schizophrenia – preliminary findings in a Turkish sample. Schizophrenia Bulletin 33: 789-791. doi:10.1093/schbul/sbm021 - [56] Jones J.L., Dargelas V., Roberts J., Press C., Remington J.S., Montoya J.G. 2009. Risk factors for *Toxoplasma gondii* infection in the United States. *Clinical Infectious Diseases* 49: 878-884. doi:10.1086/605433 [57] Weiss L.M., Dubey J.P. 2009. Toxoplasmosis: a history of clinical observations. *International Journal for Parasitology* 39: 895-901. doi:10.1016/j.ijpara.2009.02.004 Received 28 October 2019 Accepted 28 April 2020