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ABSTRACT. Revisions and redescriptions of species and higher taxa have been known in parasitology since the first
description of a parasite. Usually, they are based on standard morphometric methods or more modern genetic analysis.
The former are not always sufficiently reliable, while the latter often require expensive equipment, pre-defined genetic
markers, and appropriately prepared research material. They may be replaced by multivariate statistical methods, in
particular discriminant analysis and cluster analysis, and Kohonen artificial neural networks included in data mining.
This paper presents the examples of specific applications of these methods for the verification of the affinity of
nematodes. The discriminant analysis showed that it was possible to statistically significantly discriminate individual
nematode species, both for males and females, based on morphometric variables. This confirmed the previously
assumed division of the species complex Amidostomum acutum into three distinct species. Similarly, hierarchical cluster
analysis, used for the determination of coherent groups of nematode parasites, allowed the identification of relatively

homogeneous clusters of nematode species depending on their circle of hosts, and groups of hosts.
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Introduction

Revisions and redescriptions of species and
higher taxa are frequently encountered research
problems in parasitology. New reports bring new
data, often conflicting with the existing knowledge.
Many species have several or even ten or so
synonyms. Their systematic positions change, and
the existence of species complexes or cryptic
species is often demonstrated.

Redescriptions and the resulting revisions
usually use standard morphometric methods.
However, some new approach to use these data
would be proposing the model of body form, for
example of leeches [1,2]. The new genetic methods
are also an increasingly popular alternative but they
do have serious drawbacks. They require expensive
equipment and reagents, pre-defined genetic
markers and appropriately prepared research

material (i.e., parasites), which excludes permanent
preparations from research, for example flatworms
mounted in Canada balsam.

Multivariate statistical methods (in particular
discriminant analysis, cluster analysis), as well as
artificial neural networks, are a simple and
inexpensive alternative in this type of parasitological
research [3]. Their hardware requirements are low (a
computer with appropriate software), and analysis
may use both fresh and previously collected
material (even many years earlier).

Methods

Neural networks

Artificial neural network is an information
processing system modeled on the nervous systems
of living organisms. Capable of parallel processing
of large portions of information, it is resistant to data
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errors and omissions [4]. Preparation of such a
network is based on supervised or unsupervised
learning. Supervised learning uses a set of training
cases consisting of input data and desired output
values [5]. In unsupervised learning, the training
case consists of the input vector only, and the
network creates an output structure corresponding
to the ordering of the input set.

Kohonen networks are an example of networks
using unsupervised learning [6]. They belong to the
category of self-organizing maps (SOMs) which
transform complex, multi-dimensional input signals
into much simpler low-dimensional discretized
representation of the input space of the training
cases [7]. SOMs apply competitive learning, i.e.
nodes compete for the right to respond to a subset of
the input data. At any given time, only one output
neuron (or only one neuron per group), is active (i.e.
,on”) at a time. The neuron that wins the
competition is called a winning neuron [8].

In our research, the network used for the first
time in the revision and redescription of the species
complex Amidostomum acutum (Lundahl, 1848), a
nematode commonly recorded in wild ducks,
consisted of the input and output (radial) layers of
neurons [3]. The number of neurons in the input
layer corresponded to the number of input variables
(morphometric traits of nematodes), while the
output layer was organized in a square of 3x3
neurons. The neurons of the output layer were
strictly ordered [4]. Each neuron of the input layer
was connected to all of the output layer neurons.
Associated with these connections were weight
vectors (corresponding to the synaptic potentials in
biological neurons), which are free parameters of
the network and the adaptation of which is part of
the learning process [9]. Weight vector
dimensionality corresponded to the dimensionality
of the input vector (13 morphometric variables for
males and 18 for females), and their relative lengths
were equal 1.

In general, learning in the Kohonen network can
be divided into competition, cooperation, and
adaptation [10]. In the competition step, the
network compares the output values with the input
vector according to the adopted discriminant
function. Among the output neurons, only one
particular neuron is selected; one that is most
closely related to the input vector. When this
winning neuron is established, the next step is to
choose neurons in its neighborhood. Only the
weights of these neurons are adjusted towards the

input vectors, while the synaptic weights of neurons
outside the neighborhood remain unchanged. As the
winning neuron is best matched to the input vector
in the sense of the Euclidean distance, this winner-
take-all principle enables the approaching of the
neuron weight vectors of the output layer to the
input vectors.

The detailed learning algorithm involved the
following steps:

1. In the first step of learning (¢ = 0) the
components of the weight vector wj(z) of the j-th
neuron of the output layer had small random values
{wy waooowp, } 1]

wj(t)=[wl,wz,...,wm] (1)9

where: m — the number of network inputs
(morphometric traits).

2. Then, after feeding the network with input
variables for a given training case (previously
scaled to the range [0, 1]), the Euclidean distance
between each neuron’s weight vector and the input
vector was determined. The neuron which produced
the smallest distance became the winning neuron j*
[12]:

w.(0)=w, (1) « min(x(t)-w, (1)

) ©

where w;x(1) — weight vector of the winning
neuron j* in step , w(t) — weight vector of the j-th
neuron of the output layer in step ¢, x(¢) — the input
vector in step ¢, r — the number of neurons in the
output layer (r = 9), -l — the Euclidean norm.

3. The weights of the winning neuron and the
neurons in its neighborhood were adjusted
according to the formula [13]:

W (t+D) =w, () +nO[x@)-w (O], 0<n@) <1,

JEN, (@), ()

where: #(t) is the learning coefficient in step ¢
ensuring the convergence of the process, while
N g( t) is the radius of the neighborhood in step ¢. The
weights of other neurons (outside the
neighborhood) did not change in this step of the
algorithm [14].

4. The network was fed with another input
(training) vector, and the Euclidean distance was
determined between this vector and weight vectors
of output layer neurons. The total number of
training cases was 61 for males, 63 for females and
10 validation cases for both sexes (to monitor
network error during the learning process). This
procedure was repeated until all cases of the training
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Fig. 1. A topological map with neuron numbers and the labels of Amidostomoides species for males (M) and females
(F) (the number of cases activating a neuron is shown in brackets)

data set were given to the network (one training
epoch) [15].

5. This step involved the reduction in learning
rate #(t) and the radius of the neighborhood Ng( t).
Usually, #(t) decreases rapidly, e.g. during the first
100 epochs, from 0.9 to 0.1 (period of ordering). It
is when that decrease may be linear. After this initial
stage, 7(t) should be small (e.g. less than or equal to
0.01) for a long time. It is adopted that 7(z) c1/¢
Similarly, N(1) initially has relatively high values
which gradually decrease during the step of
ordering, e.g. down to 1. In the final step of learning,
the radius of the neighborhood may be zero (only
the winning neuron is activated) [16]. In this paper,
these parameters decreased linearly from initial 0.3
and 1.0 to the final 0.01 and O.

6. The last step consisted in moving to the next
iteration (1=t+1) and repeating the steps 2 - 5 until
the maximum number of iterations 7 (r=T) [14].
This number should be at least 500 times greater
than the number of neurons in the output layer to
achieve the desired level of statistical accuracy [11].
In the present study, the number of training epochs
was 3500 for males and 5000 for females.

Compared to other classification methods, the
use of Kohonen networks enables to retain

topology; after learning, similar cases end up in one
class or similar classes according to the definition of
neighborhood applied during learning [17]. Input
values are then replaced by a smaller number of
coding vectors. In this way, the set of data is
compressed. In this process, noise and outliers are
removed, as the map contains only coding vectors
and not the original input, and each of these vectors
represents the sample of input data. Outliers or
noise-containing data are mapped as a coding vector
representing the cluster to which the data belong [9].
The results of this classification are presented on the
topological map (Fig. 1).

The map shows that in the case of males, neurons
4 and 7 grouped most cases (91%) for the species
Amidostomoides monodon, while neurons 6 and 9
grouped the majority of cases (93%) representing
Amidostomoides petrovi. Other cases for these
species were grouped into neurons 2 and 8. Cases
for Amidostomoides acutum activated neurons
located in the upper part of the topological maps,
wherein approx. 85% of these observations were
grouped into neurons 1 and 3. Neuron 5 did not
represent any of the species. In turn, the topological
map for females (Fig. 1) showed that neurons 2, 3
and 6 grouped the majority of cases (82%) of the
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species A. monodon and neuron 7 was the winner
for approx. 33% of the observations of the species
A. acutum. The remaining cases were distributed
between neurons 4, 5, 8 and 9. A. petrovi was
represented by neurons located in the left and
bottom parts of the topological map.

Discriminant analysis

In order to verify the results of clustering using
Kohonen network, and select morphometric
variables (traits) with the greatest discriminatory
power, we used linear discriminant analysis (LDA).
LDA is a method of supervised learning (categories
of the grouping variable must be previously
defined). It seeks projection axes on which
observations from different classes are distanced
from each other, while requiring that observations of
the same class are close to each other [18].

In this study, LDA applied the linear canonical
discriminant functions [19]:

D=wy+wx +w,x,+.+tw,x,, (4

where D is the value of the discriminant
function, x,,..,x,, are discriminant variables, w;,.w,,
are coefficients for discriminant variables, w, —
constant, m — number of discriminant coefficients
(13 for males and 18 for females).

Canonical discriminant function coefficients
were determined so as to maximize between-class
distance and minimize the within-class distance.
The data from the training set were presented in the
form of a matrix, where n is the number of
observations, m is the number of discriminant
variables. We calculated within-class and between-
class scatter matrix according to the following
formula [20]:

S, =2 > -X)x,-X)", (5

i=l x;eX;

S, = 1 & —R(E, -%), ©)

where: §,, — within-class scatter matrix, S, —
between-class scatter matrix, x; — column vector
corresponding to the i-th row of the matrix X, X; -
matrix consisting of matrix X rows corresponding to
the class 7, X; — the average for the class 7, X — the
general average, ¢ - the number of classes (c = 3), n;
— the number of observations in the class i, and 7 —

transposition.
The following relationships occur [18]:
S, =S, +S,, N,

S, =300 -0 ©)

where: S, is the total-scatter matrix.
Class and general means were calculated
according to the following formula [21]:

X, =— 2 X, ©))
n,‘ xeX;
X= li yx,. (10)
ni=y x;eX;

With the invertible matrix S, the first LDA
vector was determined according to the
optimization formula [22]:

T
maxm, (11
v W, S w,

where w; is the first vector, while the second
LDA vector was determined to maximize the scatter
between classes and at the same time minimize
scatter within classes along all axes perpendicular to
the first LDA vector, etc. The optimization of this
ratio consisted in solving the eigenvalue problem
[23]:

S,w, =4S, w,, (12)

where /; is the i-th eigenvalue.

When determining the contribution of each
variable to the determination of the class we used
Wilks’ lambda coefficient A, according to the
formula [24]:

A |

A=T1
=+ 4,

(13),

where ¢ is the maximum number of discriminant
functions. This statistic takes into account both the
differences between the classes, as well as
homogeneity within the groups. Because it takes
into account the inverse values [1/(1+A)], variables
with the lowest ratio have the highest discriminant
power [25].

We also calculated the value of the partial Wilks’
lambda, denoted as 4 (ulx), which determines the
change in the value of Wilks’ lambda of the model
A(x) after the addition of the variable u to the subset
x=[x;%xp,...,x,,] [26]:

Ax|u)

A |x)= A

(14).

This statistic was used directly to calculate the
value of F statistic and the level of significance for
each discriminant variable.

In addition, we determined tolerance coefficient
T, a measure of redundancy in the model of a given
discriminant variable [27]:
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T=1-R’ (15),

where R? is the coefficient of determination.

We also verified LDA assumptions: normality of
variable distribution and equality of variance and
covariance matrices for each class.

The last step was to determine the classification
function coefficients used for assignment of objects
(individuals) to the distinguished classes [28]:

V.=c,+w,x, +w,x, +..+w, x, (16)

where: V; — resultant classification value, i — the
number of the class (i = 1,2,3), ¢;— constant for the
i-th class, w;; — the weight of the j-th variable
(morphometric trait) when calculating the
classification for the i-th class, x; — value observed
for a given case for the j-th variable, j=1,2, ..., m, m
— the number of discriminant variables (13 for males
and 18 females).

The object was assigned to a class for which the
value of the classification function was the biggest,
establishing a priori probabilities proportional to
the size of classes. The results of discriminant
analysis showed a high capacity of discrimination
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between species of nematodes under the applied set
of discriminant variables. Only one case was
incorrectly classified in the case of males and 4
cases in females, giving an overall percentage of
correct classification of 98.59% and 94.52%,
respectively.

It should be noted that discrimination of
nematode species was statistically significant
(A=0.0205; F=26.11; p=<0.05 for males and
A=0.0280; F=34.11; p<0.05 for females). Fig. 2
presents a scatterplot of the canonical values for
male and female nematodes, which confirms a good
separation of the three species by the obtained
discriminant functions. In the case of males, 6 of the
13 morphometric variables turned out to be
statistically significant (p<0.05). Among females, a
significant contribution to the class discrimination
was observed for 8 out of 18 analyzed morph-
ometric variables (p<0.05). Wilks’ lambda
coefficients (0.0206 — 0.0342 for males and 0.0281
— 0.0403 for females) and tolerance coefficients
(0.5151 — 0.8151 for males and 0.1951 — 0.9077 for
females) indicated relatively high discrimination
power of those variables and their low redundancy.
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Fig. 2. A scatterplot of the canonical values for male and female nematodes [reproduced from: Kavetska KM et al.
2011. Revision of the species complex Amidostomum acutum (Lundahl, 1848) (Nematoda: Amidostomatidae).

Parasitology Research 109: 105-117]
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Cluster analysis

Cluster analysis is aimed at the discovery of
natural groups (clusters) of objects existing in a
multidimensional dataset. The groups should be as
internally homogeneous as possible, and also as
different from one another as possible [29]. In the
analysis, all variables are treated as interdependent,
and its purpose is to identify the structure of the
tested set of variables or objects. Among the various
methods used in cluster analysis, hierarchical
agglomerative clustering is a general procedure,
which sequentially connects pairs of most similar
clusters in accordance with the arbitrary function
called the measure of similarity, thus generating a
nested set, also called a hierarchy [30]. The result of
the agglomerative method can be presented as a
dendrogram in which clusters of similar objects
occur as separate branches. Selection of a suitable
similarity measure indirectly influences the shape of
the cluster, and thus plays a key role in the process
of clustering. Although dependent on the problem
being solved, this selection is usually confined to a
small number of the most commonly used
measures, such as the Euclidean distance or

Pearson’s correlation coefficient [31].

In our study, ordering of similarities was
determined based on the cluster analysis using the
Ward algorithm, with the Euclidean distance
adopted as a measure of affinity [32]. In the Ward’s
method two clusters are connected with each other
on the basis of the information loss criterion, the
sum of squared errors (SSE). For each cluster i, its
average (or centroid) and the sum of squared errors
(SEE)) are calculated. SSE; is the sum of the squared
deviations of each sample in a cluster from its
average. For k clusters, there are k values of SSE
(SSE;, SSE,, ..., SSE)), the sum of which gives the
total value of SSE:

k
SSE =" SSE, 7).

i=1

For each pair of clusters m and n, we first
calculated the mean (centroid) for the created mn
cluster. Then we calculated the sum of squared
errors for the mn cluster (SSE,,,) according to the
formula (18):

SSE = SSE, + SSE, + ...+ SSE, — SSE, — SSE, + SEE,,

Tree Diagram
Ward's Method

Euclidean Distances

Amidostomoides acutum

Eucoleus contortus

Amidostomoides petrovi

Tetrameres pavonis

Tetrameres spinosa
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Streptocara formosensis

Capillaria anatis

Tetrameres fissispina

Amidostomoides auriculatum

Tetrameres somateriae

Echinuria pamirica

Epomidiostomum ryzhikovi
Anisakidae gen. sp.

Hystrichis tricolor
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Paracuaria adunca

Eustrongylides mergorum

Epomidiostomum uncinatum b
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Fig. 3. Coexistence of nematode species taking into account host species
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Fig. 4. Similarity of ducks in terms of their nematofauna

Clusters m and n which showed the smallest
increase in SSE (the smallest information loss) were
then combined [33].

The aim of cluster analysis in the present study
was to identify internally coherent groups of
nematode species depending on the circle of their
hosts, as well as similar groups of host species
depending on the nematodes living in them. The
results of these analyses are shown in a dendrogram
in Fig. 3 and 4.

The first dendrogram (Fig. 3) highlighted all the
analyzed elementary coinvasive  systems:
Amidostomoides acutum and Eucoleus contortus; A.
petrovi, Tetrameres pavonis and T. spinosa; A.
monodon, Streptocara formosensis and Capilaria
anatis; etc., which at the highest level form two
main clusters. The first cluster (upper) consisted
mainly of nematodes reported in a wide range of
hosts (generalists). These included all polyxenic
species and 7. pavonis which matched this system
because of its specificity regarding environmental
hosts. It is also worth noting that each of the three
above mentioned elementary systems was created

2.5 3.0 3.5 4.0 4.5 5.0
Linkage Distance

with the participation of one of the three species of
the genus Amidostomoides, dominant in each of the
three tribes. The second cluster (bottom) consisted
of species with narrow specificity (specialists),
found most often in one or two species of ducks
(including Eustrongylides mergorum, Paracuaria
adunca, Tetrameres somateriae, Epomidiostomum
ryzhikovi, Hystrichis tricolor). It is worth noting
that the nematodes from the lower cluster were not
observed in 9 out of 17 of the analyzed duck
species, including none of the Aythyini tribe. At this
stage, it is very difficult to form conclusions about a
cluster containing nematode species found in single
individuals.

Similarly, a diagram showing the similarities
between host Anatinae species revealed two major
groups of birds (Fig. 4). A clearer bottom cluster
was formed by the Aythyini tribe individuals and
very closely related Bucephala clangula. The
cluster of nematofauna in this species was definitely
closer to Aythyini, even though B. clangula belongs
to Merginae. The group of these four species of
ducks (B. clangula, A. marila, A. fuligula and A.
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ferina) was clearly separated from all Anatinae. The
upper cluster, containing as many as 13 species of
ducks, was not as consolidated, and formed specific
and hierarchically structured sub-sets. The first of
these sub-sets (Clangula hyemalis, Melanitta nigra
and Mergus merganser) was a relatively compact
group of Merginae, with a relatively high numbers
of individuals. A cluster with a similar distance was
the one containing other two sub-sets: first of all a
species-rich group within Anatinae (Anas
platyrhynchos, Anas clypeata and Anas crecca) and
a group of other Anatinae ducks and Merginae, less
frequently studied. Perhaps further parasitological
research, especially in the latter group, will allow to
propose a clearer structure, showing more
interrelationships between nematodes and between
their hosts. However, it is most likely that it will
correspond to the system of three tribes.

Conclusions

Morphometric traits of nematodes, used in the
first part of the paper, significantly discriminated
individual species, both for males and females. This
confirmed the previously established division of the
species complex Amidostomum acutum into three
distinct species (Amidostomoides acutum, A. petrovi
and A. monodon). Similarly, hierarchical cluster
analysis, used in the second part of the study,
allowed the isolation of relatively homogeneous
clusters of nematode species depending of their
circle of hosts, and groups of hosts depending on the
nematodes living in them. Our analyses showed that
the more traditional multivariate methods, i.e. linear
discriminant analysis and hierarchical cluster
analysis, and also a more innovative data mining
method of the Kohonen artificial neural network,
can be very useful tools in the revision and
redescription of parasites, especially with limited
access to alternative techniques such as sequence
analysis.
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