
Introduction

Sheep gastrointestinal nematodes (GIN) are

recognized as being responsible for lowered

productivity and significant economic losses [1,2].

The use of anthelmintic drugs has been a primary

method of controlling parasites in the past [3].

However, the development and the worldwide

extent of anthelmintic resistance (AR) to various

drug classes, along with the emergence of multi-

drug resistant isolates, poses a threat to the

sustainability of their use [4–6]. Alternative or

complementary methods, such as biological control,

may provide opportunities to effectively maintain

control. In this way, it is possible to reduce chemical

usage, management costs, toxicity, and decrease

chemical residues in meat, milk, and the

environment [7]. Among all-natural antagonists

studied so far, the nematode-trapping fungi have

shown interesting results both in the field, and under

laboratory conditions [8–11]. The overall effect of

the fungus is to prevent the massive transmission of

free-living, infective larvae from animal faeces to

the surrounding herbage, thus decreasing pasture

infectivity and the resulting intake of parasitic

larvae by grazing livestock. Literature shows that,

among all nematophagous fungi isolates, the

Duddingtonia flagrans species is the most efficient

in controlling ruminant nematodes because of its

ability to survive the passage through the animal

digestive tract and trap larvae in faeces [12–14].

Recent in vitro and in vivo experimental studies

have shown that D. flagrans could reduce GIN by

up to 100% [15]. Nevertheless, the quantity of
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chlamydospores of D. flagrans required for the

reduction of GIN third-stage larvae (L3) is largely

unknown and is still a matter of discussion [16]. 

The aim of this experiment was, therefore, to

determine, in vitro, the nematophagous activity of

various D. flagrans concentrations in the presence

of different numbers of L3, and to evaluate the

efficacy of this fungus on different species of

Trichostrongylidae.

Materials and Methods

Preparation of culture media and fungal

suspension

Duddingtonia flagrans (Mycelia NV, Belgium)

was grown for four weeks on enriched sabouraud

agar with the addition of chloramphenicol to inhibit

bacterial growth (2% CHF-WA) in Petri plates (9-

cm-diameter) at 25°C [17]. Chlamydospores of D.

flagrans were harvested by gently squirting distilled

water over the mycelia and carefully scraping it

from the agar surface. The mycelial suspension was

mechanically blended, after which three 10 µl

aliquots were extracted and diluted in distilled

water, in order to count the number of

chamydospores per millilitre using a haem -

ocytometer (Neubauer chamber). 

Preparation of infective larvae

Third-stage infective larvae (L3) of mixed

gastrointestinal nematodes were cultured from a pool

of fresh faeces of infected sheep (500 eggs per gram

of faeces). Faeces were collected from a sheep farm

in central Italy. The samples collected directly from

the animals’ rectum, were pooled and incubated for

10 days at 25°C in a large container to ensure good

levels of oxygen and humidity (50–80%). At the end

of the coproculture, larvae were recovered using the

Baermann method, cleaned with a sucrose solution to

remove contaminating detritus, and rinsed three times

in sterile distilled water to eliminate the sucrose

residues [18]. The L3 were counted and kept at 4°C.

An aliquot of larvae was used for a morphological

identification to the genus level [19]. Morphological

identification was confirmed by molecular analysis

[20]. The amplicons obtained by PCR were

sequenced (Bio-Fab research, Rome, Italy,) and the

sequences were aligned using Data Analysis in

Molecular Biology and Evolution version 4.5.55

(DAMBE) and compared to the sequences available

in GenBank database using Nucleotide BLAST

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Trial design

The growth of D. flagrans and its interaction

with L3 were examined on 2% CHF-WA in Petri

plates (9-cm-diameter). The plates were sown with

1 ml of fungal suspension containing 1000, 3000,

6250, or 11000 chlamydospores, respectively, and

cultivated for 7 days at 25°C [16]. On the 7th day, 1

ml of culture suspension containing respectively 500,

1000, or 1500 L3 was poured into the center of each

plate. Three parallel trials were performed for each

chlamydospores concentration. Each trial included

control plate to which 1 ml of distilled water, without

fungi, was added. All plates were incubated at 25°C,

in the dark, for a period of 7 days. On the 7th day, the

agar from all trials was removed from the Petri plates

and L3 were collected using the Baermann technique.

The recovered larvae were counted and identified as

described above [19,20].

Statistical analysis

The results obtained underwent statistical

analysis using IBM SPSS 28 software. The non-

parametric Kruskal-Wallis test was used to compare

the numbers of recovered L3 among different

chlamydospores concentrations and between each a

fungus-treated group, and its respective control. In

case of significance, Pairwise Tests were conducted

using the Bonferroni correction for multiple

comparison. The fungal efficacy for each fungal

concentration was estimated using the formulae:

Reduction % = 100-(mean L3 in fungus group ×

100/mean L3 in control group) [12].

Results 

Morphological and molecular identification

Morphological identification of the larvae

obtained from larval culture showed that nematodes

belonged to the genera Haemonchus (53%),

Teladorsagia (29%), Trichostrongylus (10%), and

Chabertia (8%). Haemonchus contortus, Telador -

sagia circumcincta, Trichostrongylus colubriformis,

and Chabertia ovina were detected by molecular

analysis. The nucleotide sequences obtained by

PCR showed 99–100% identity with sequences

currently available in GenBank (GenBank accession

nos: KX829170.1; JF680984.1; JF680985.1;

KC998758.1).

Statistical analysis

The statistical analysis of the results indicated

that the larval reductions by D. flagrans, increasing
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order of fungal concentration, were 93%, 98.5%,

99% and 100% compared to the 500 L3-control

group; 97%, 99%, 100% and 100% compared to the

1000 L3-control group; 99%, 99%, 100% and 100%

compared to 1500 L3-control group. Comparison

between different chlamydospore concentrations

revealed significant differences between 1000 and

11000 chlamydospores for the culture with 500 L3

(P=0.012), 1000 L3 (P=0.019), and between

concentrations of 1000 and 11000 chalmydospores

(P=0.039), as well as between 1000 and 6250

chlamydospores for the culture with 1500 L3

(P=0.039). Additionally, significant differences in H.

contortus larval reductions were observed between

concentrations of 1000 and 11000 chlamydospores

for the culture with 500 L3 (P=0.029), 1000 L3

(P=0.020 and 1500 L3 (P=0.037), as well as between

1000 and 6250 chlamydospores for the culture with

1500 L3 (P=0.037). There was a significant variation

in T. circumcincta and T. colubriformis larval

reduction between 1000 and 11000 chlamydospores

in the culture with 500 L3 (P=0.018, P=0.037,

respectively), while T. circumcincta showed a

significant variation also between 1000 and 6250

chlamydospores for the culture with 1000 L3

(P=0.037). Chabertia ovina showed a significant

variation in the larval reduction between 1000 and

3000 chlamydospores (P=0.045), 1000 and 6250

chlamydospores (P=0.045) and between 1000 and

11000 chlamydospores (P=0.045), only for the

culture with 500 L3. The percentage reduction of the

total GIN L3 and each species recovered from plate

with agar set up with different numbers of L3 and

different concentrations of D. flagrans is shown in

Table 1.

Discussion

The results of this study have shown that as

fungal concentrations increased, so did the larval

reduction of third-stage infective larvae. The

comparison between various concentrations of
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Table 1. The percentage reduction of the total nematode larvae and each species (L3) recovered from plate with the

agar set up with different numbers of L3 and various concentrations of Duddingtonia flagrans. Different letters in the

same column indicate a significative difference in the data comparison (P≤0.05).

Number of

latvae 

Duddingtonia

flagrans

chlamydospores 

Third-stage

larvae (L3) 

Haemonchus

contortus 

Teledorsagia

circumcincta 

Trichostrongylus

colubriformis 
Chabertia ovina 

Reduction %±SD Reduction %±SDReduction %±SDReduction %±SDReduction %±SD

500 L3 1000 92.90a±0.83 93.75a±2.27 93.38a±1.08 88.57a±5.71 88.24abc±5.88

3000 98.53±0.30 98.44±0.52 98.58±0.00 98.10±1.65 100.00a±0.00

6250 99.39±0.15 99.65±0.60 99.05±1.08 99.05±1.65 100.00b±0.00

11000 100.00a±0.00 100.00a±0.00 100.00a±0.00 100.00a±0.00 100.00c±0.00

1000 L3 1000 97.43a±0.26 97.91a±0.55 97.32b±0.42 94.72±1.86 97.83±2.17

3000 98.94±0.26 99.03±0.32 99.03±0.21 97.56±2.44 100.00±0.00

6250 99.85±0.13 99.79±0.21 99.88b±0.21 100.00±0.00 100.00±0.00

11000 100.00a±0.00 100.00a±0.00 100.00±0.00 100.00±0.00 100.00±0.00

1500 L3 1000 98.81ab±0.11 98.90ab±0.00 98.48±0.73 98.98±0.44 99.33±1.17

3000 99.35±0.07 99.45±0.14 98.96±0.37 99.49±0.88 100.00±0.00

6250 100.00b±0.00 100.00b±0.00 100.00±0.00 100.00±0.00 100.00±0.00

11000 100.00a±0.00 100.00a±0.00 100.00±0.00 100.00±0.00 100.00±0.00



chlamydospores revealed significant differences

mainly between 1000 and 11000 chlamydospores in

each trial. In relation to the results obtained, the

number of L3 in trials does not appear to be a

determining factor in the predatory capacity of D.

flagrans and according to the present study, a

minimum concentration of D. flagrans (1000

chlamydospores/ml) is able to determine a

significant percentage reduction (92.9%) on 500 L3.

The reduction effect on L3 obtained in the current

research (92.90%–100%) is consistent with finding

from previous studies [13,14,21–23]. However, it is

difficult to compare the in vitro effectiveness results

of D. flagrans, as the fungal dose and number of

L3s used vary among these studies. It is known that

predatory activity depends on the isolate’s ability to

produce traps and the number of traps developed on

surface area unit. Most authors claim that D.

flagrans produces traps only after stimulation by

nematodes [24–27]. Nevertheless, the present

research does not confirm that the high motility of

L3 is a potent stimulus for fungal trap

morphogenesis, and the results obtained are mainly

in agreement with two studies carried out in vitro

bovine faecal culture. In such studies, Zegbi et al.

[16] and Gronvold et al. [28] showed that an

increase in fungal concentrations resulted in

increased predatory activity regardless of the

number of eggs orlarvae in bovine faeces. On the

contrary, Sagües et al. [29] described that the

trapping efficacy of D. flagrans is positively

influenced by higher number of eggs per gram of

faeces (epg), suggesting that greater larval density

stimulates the development of traps or nets,

significantly reducing the number of emerging

larvae compared to the control group. Therefore, it

could be hypothesized that the predatory capacity of

D. flagrans may depend on the different

characteristics of the media or faeces used for the

cultures, on the concentration of chlamydospores as

well as on the strain of D. flagrans. In fact, it is

known that different isolates of D. flagrans show

varying trapping success [26,30,31]. It has been

reported that even equal doses of the same isolates

had different efficacy against the same parasite

species in separate studies. For example, Danish

isolate D. flagrans Troll A showed varying efficacy

against L3 of Cooperia oncophora [28,32].

Different trapping potential also exists, as some

isolates need a smaller inoculum size compared to

others to achieve good trapping effect [33].

Regarding the larval reduction of the GIN species

considered in this trial, D. flagrans showed the same

effectiveness on all of them, although the L3

reduction could be influenced by the predominance

of the nematode species present in the initial

population used for the trials [22,34–36]. In the

current study, the reduction percentage of H.

contortus (93.75%–100%) and T. circumcincta

(93.38%–100%) in fungi groups compared with

control groups is similar, the difference has always

been significant between 1000 and 11000

chlamydospores. Other reports showed similar

results against the same GIN species [11,37,38]. In

the present research, the reduction of C. ovina was

off 100% already at a concentration of 3000

chlamydospores of D. flagrans. Only in a vivo study

by Liu et al. [39] the effectiveness of D. flagrans,

compared to C. ovina (71.4%), was reported. 

The results of the current study confirm the

efficacy of D. flagrans and highlight its importance

as an alternative control method for GIN. This is

especially crucial considering the increasing

resistance of GIN to synthetic anthelmintics, which

can lead to significant economic losses and impact

food security [7,40]. However, further studies

should be conducted to gather more information on

the effectiveness of D. flagrans. Since

environmental conditions seem to play a significant

role in determining the level of induced predation, it

would also be interesting to evaluate the efficacy of

D. flagrans both on its own and in combination with

other nematophagous fungi under natural grazing

conditions. 
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