Metazoan endoparasites of Myloplus nigrolineatus (Characiformes: Serrasalmidae) from upper Amazon river basin, Brazil
DOI:
https://doi.org/10.17420/ap71.544Keywords:
Upper tocantins basin, lotic environment, ichthyoparasite fauna, Digenea, NematodaAbstract
The success of Trematoda and Nematoda infection in fish involves a complexity of variables. The objective of this study was to report the parasitological descriptors (prevalence, mean abundance, and mean intensity) and community status of Myloplus nigrolineatus as well as to evaluate the relationship between abundance and richness of endoparasites with biometric parameters, sex, Kn the hosts, percentage cover native vegetation and water temperature. A total of 7,256 endoparasites were found: 861 digeneas and 6,395 specimens of nematodes were collected in the intestine from Myloplus nigrolineatus. One species of Digenea and five species of Nematoda were collected. The initial documentation of the prevalence (%) of endohelminth species in M. nigrolineatus revealed the following: Dadaytrema oxicephala (70%), Chabaudinema americanum (52%), Cucullanus pinnai pinnai (13%), Myleusnema bicornis (65%), Procamallanus (Spirocamallanus) inopinatus (9%) and Rondonia rondoni (35%). The mean intensity and mean abundance were 329.82 ± 416 and 315.48 ± 417, respectively. The trematode Dadaytrema oxycephala was considered a central and dominant species. The total abundance was explained by the variables total length, relative condition factor (Kn), percentage cover native vegetation and water temperature. Fish relative condition factor (Kn) and sex were not influenced by the parasite infection and did not impair the body condition of the hosts. The GLMM showed there is no relationship between abundance and richness of endoparasites with percentage cover native vegetation, while that every twenty centimeters more in the total length of the hosts, the abundance of endoparasites in the intestine increases, approximately, 2 specimens.
References
[1] Lagrue C., Kaldonski N., Motreuil S., Lefèvre T., Blatter O., Giraud P., Bollache L. 2011. Interspecific differences in drift behaviour between the native Gammarus pulex and the exotic Gammarus roeseli and possible implications for the invader’s success. Biological Invasions 13(6): 1409–1421. https://doi.org/10.1007/s10530-010-9899-0
[2] Poulin R., Leung T.L.F. 2011. Body size, trophic level, and the use of fish as transmission routes by parasites. Oecologia 166(3): 731–738. https://doi.org/10.1007/s00442-011-1906-3
[3] Bellay S., Oliveira E.F., Almeida-Neto M., Lima Junior D.P., Takemoto R.M., Luque J.L. 2013. Developmental stage of parasites influences the structure of fish-parasite networks. PLoS ONE 8(10): e75710. https://doi.org/10.1371/journal.pone.0075710
[4] Tavares-Dias M., Oliveira M.S.B., Gonçalves R.A., Silva L.M.A. 2014. Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasitologica 59(1): 158– 164. https://doi.org/10.2478/s11686-014-0225-3
[5] Takemoto R.M., Lizama M.A.P. 2010. Helminth fauna of fishes from the upper Paraná River foodplain, Brazil. Neotropical Helminthology 4: 5–8.
[6] Virgilio L.R., Lima F.S., Keppeler E.C., Takemoto R.M., Camargo L.M.A., Meneguetti D.U.O. 2023. Endoparasites communities of fish at different trophic levels in the Western Brazilian Amazon: human, environmental and seasonal influence. Acta Parasitologica 68: 612–636. https://doi.org/10.1007/s11686-023-00685-y
[7] Luque J.L., Poulin R. 2007. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity. Parasitology 134(6): 865–878. https://doi.org/10.1017/s0031182007002272
[8] Shamsi S., Steller E., Chen Y. 2018. New and known zoonotic nematode larvae within selected fish species from Queensland waters in Australia. International Journal of Food Microbiology 272: 73–82. https://doi.org/10.1016/j.ijfoodmicro.2018.03.007
[9] Tavares-Dias M., Gonçalves R.A., Oliveira M.S.B., Neves L.R. 2017. Ecological aspects of the parasites in Cichlasoma bimaculatum (Cichlidae), ornamental fish from the Brazilian Amazon. Acta Biologica Colombiana 22(2): 175–180. https://doi.org/10.15446/abc.v22n2.60015
[10] Oliveira M.S.B., Lima Corrêa L., Prestes L., Neves L.R., Brasiliense A.R.P., Ferreira D.O., Tavares-Dias M. 2018. Comparison of the endoparasite fauna of Hoplias malabaricus and Hoplerythrinus unitaeniatus (Erythrinidae), sympatric hosts in the eastern Amazon region (Brazil). Helminthologia 55(2): 157–165. https://doi.org/10.2478/helm-2018-0003
[11] Morais A.M., Cárdenas M.Q., Malta J.C.O. 2019. Nematofauna of red piranha Pygocentrus nattereri (Kner, 1958) (Characiformes: Serrasalmidae) from Amazonia, Brazil. Revista Brasileira de Parasitologia Veterinária 28(3): 458–464. https://doi.org/10.1590/S1984-29612019055
[12] Pavanelli G.C., Takemoto R.M., Eiras J.C. 2013. Parasitologia de peixes de água doce do Brasil. Eduem, Editora da Universidade Estadual de Maringá, Maringá.
[13] Sures B., Nachev M., Selbach C., Marcogliese D.J. 2017. Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology‘. Parasites & Vector 10: 65. https://doi.org/10.1186/s13071-017-2001-3
[14] Lemos J.R.G., Tavares-Dias M., Marcon J.L., Lemos P.E.M., Affonso E.G., Zaiden S.F. 2006. Relação peso-comprimento e fator de condição em espécies de peixes ornamentais do Rio Negro, Estado do Amazonas (Brasil). Congresso Iberoamericano Virtual de Acuicultura. Zaragoza: Revista AquaTIC, 2007: 721–725.
[15] Franceschini L., Zago A.C., Zocoller-Seno M.C., Veríssimo-Silveira R., Ninhaus-Silveira A., Silva R.J. 2013. Endohelminths in Cichla piquiti (Perciformes, Cichlidae) from the Paraná River, São Paulo State, Brazil. Revista Brasileira de Parasitologia Veterinária 22(4): 475–484. https://doi.org/10.1590/s1984-29612013000400006
[16] Le Cren E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch Perca fluviatilis. Journal of Animal Ecology 20: 201–219. https://doi.org/10.2307/1540
[17] Guidelli G., Tavechio W.L.G., Takemoto R.M., Pavanelli G.C. 2011. Relative condition factor and parasitism in anostomid fishes from the floodplain of the upper Paraná River. Brazilian Journal of Veterinary Parasitology 177(1–2): 145–151. https://doi.org/10.1016/j.vetpar.2010.11.035
[18] Vieira T.B., Lajovick L.C., Stuart C., Bastos R.P. 2017. Icthyofauna from streams of Barro Alto and Niquelândia, upper Tocantins River Basin, Goiás State, Brazil. Pan-American Journal of Aquatic Sciences 12(2): 136–145.
[19] Lobato C.M.C., Benone N.L., Brasil L.S., Montag L.F.A. 2022. Land use effects on the co-occurrence patterns of streams ichthyofauna in the eastern Amazon. Ecological Indicators 145: 1–8.
[20] Milesi S.V., Dolédec S., Melo A.S. 2016. Substrate heterogeneity influences the trait composition of stream insect communities: an experimental in situ study. Freshwater Science 35: 1321–1329. https://doi.org/10.1086/688706
[21] Froese R., Pauly D. 2023. Fishbase. World Wibe Web eletronic publication. Available at http://www.fishbase.org (accessed November 15, 2023).
[22] Escobar M.D., Ota R.P., Machado-Allison A., Farias I.P., Hrbek T. 2019. A new species of Piaractus (Characiformes: Serrasalmidae) from the Orinoco Basin with a redescription of Piaractus brachypomus. Journal of Fish Biology 95(2): 411–427. https://doi.org/10.1111/jfb.13990
[23] Ota R.P., Machado V.N., Andrade M.C., Collins R.A., Farias I.P., Hrbek T. 2020. Integrative taxonomy reveals a new species of pacu (Characiformes: Serrasalmidae: Myloplus) from the Brazilian Amazon. Neotropical Ichthyology 18(1): e190112. https://doi.org/10.1590/1982-0224-20190112
[24] Santos M.D., Albuquerque M.C., Monteiro C.M., Martins A.N., Ederli N.B., Brasil-Sato M.C. 2009. First report of larval Spiroxys sp. (Nemata, Gnathostomatidae) in three species of carnivorous fish from Três Marias Reservoir, São Francisco River, Brazil. Pan-American Journal of Aquatic Sciences 4: 306–311.
[25] Costa e Silva T., Petrônico P.B., Batista G.A., Mathias P.V.C., Mendonça C.V., Carvalho J.C., Mello B.M., faleiro F.V. 2019. Guia de Peixes da UHE Estreito. 1st ed., Goiânia, Biota.
[26] Segplan 2019. Secretaria de Estado de Gestão e Planejamento. Perfil dos Municípios Goianos. at http://www.imb.go.gov.br/index.php?option=com_content&view=article&id=14&Itemid=218 (accessed March 20, 2019).
[27] Oliveira M.P., Tejerina-Garro F.L. 2010. Distribuição e estrutura das assembléias de peixes em um rio sob influência antropogênica, localizado no alto da bacia do rio Paraná – Brasil central. Boletim do Instituto de Pesca 36(3): 185–195.
[28] Melo C.E., Lima J.D., Melo T.L., Silva V.P. 2005. Peixes do Rio das Mortes. Identificação e ecologia das espécies mais comuns. Editora Unemat, Cuiabá, Brasil.
[29] Aydin B., Barbas L.A.L. 2020. Sedative and anesthetic properties of essential oils and their active compounds in fish: a review. Aquaculture 520: 734999. https://doi.org/10.1016/j.aquaculture.2020.734999
[30] Eiras J.C., Takemoto R.M., Pavanelli G.C. 2006. Métodos de estudo e técnicas laboratoriais em parasitologia de peixes. 2nd ed. Eduem, Maringá.
[31] Moravec F. 1998. Nematodes of freshwater fishes of the Neotropical Region. Czech Republic: Academia, Praha.
[32] Thatcher V.E. 2006. Amazon fish parasites. 2nd ed. Pensoft Publishers, Sofia-Moscow.
[33] Oliveira M.S.B., Gonçalves R.A., Ferreira D.O., Pinheiro D.A., Neves L.R., Dias M.K.R., Tavares- Dias M. 2017. Metazoan parasite communities of wild Leporinus friderici (Characiformes: Anostomidae) from Amazon River system in Brazil. Studies on Neotropical Fauna and Environment 52(2): 146–156. https://doi.org/10.1080/01650521.2017.1312776
[34] Cárdenas M.Q., Justo M.C.N., Reyes A.R.P., Cohen S.C. 2022. Diversity of Nematoda and Digenea from different species of characiform fishes from Tocantins River, Maranhão, Brazil. Brazilian Journal of Veterinary Parasitology 31(3): e005122. https://doi.org/10.1590/ S1984-29612022038
[35] Cavalcanti L.D., Gouveia E.J., Michelan G., Lehun A.L., Silva J.O.S., Hasuike W.T., Russo M.R., Takemoto R.M. 2023. Components influencing parasitism by Dadaytrema oxycephala (Digenea: Cladorchiidae) in Neotropical fish. Parasitology Research 122(5): 1221–1228. https://doi.org/10.1007/s00436-023-07822-6
[36] Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology 83(4): 575–583. https://doi.org/10.2307/3284227
[37] Bush A.O., Holmes J.C. 1986. Intestinal helminthes of lesser scaup ducks: an interactive community. Canadian Journal of Zoology 64: 142–154.
[38] Rohde K., Hayward C., Heap M. 1995. Aspects of the ecology of metazoan ectoparasites of marine fishes. International Journal for Parasitology 25(8): 945–970. https://doi.org/10.1016/0020-7519(95)00015-t
[39] Thul J.E., Forrester D.J., Abercrombie C.L. 1985. Ecology of parasitic helminths of wood ducks, Aix sponsa, in the Atlantic flyway. Proceedings of the Helminthological Society of Washington 52(2): 297–310.
[40] Bonnet B.R.P., Ferreira L.G., Lobo F.C. 2008. Relações entre qualidade da água e uso do solo em Goiás: uma análise à escala da bacia hidrográfica. Revista Árvore 32: 311–322.
[41] Siegel S. 1975. Estatística não-paramétrica, para as ciências do comportamento. McGraw-Hill do Brasil, São Paulo.
[42] Alin A. 2010. Multicollinearity. Wiley Interdisciplinary Reviews Computational Statistics 2: 370–374.
[43] Naimi B. 2017. Uncertainty analysis for SDMs. R Package Version 4.0. http:// CRAN.R-project.org/package=usdm (accessed March 12, 2020).
[44] R Core Team 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.Rproject. org/ (accessed November 15, 2023).
[45] Campos C.M., Fonseca V.E., Takemoto R.M., Moraes F.R. 2009. Ecology of the parasitic endohelminth community of Pseudoplatystoma fasciatum (Linnaeus, 1776) (Siluriformes: Pimelodidae) from the Aquidauana River, Pantanal, State of Mato Grosso do Sul, Brazil. Brazilian Journal of Biology 69(1): 93–99. https://doi.org/10.1590/S1519-69842009000100011
[46] Amarante C.F., Tassinari W.S., Luque J.L., Pereira M.J.S. 2016. Parasite abundance and its determinants in fishes from Brazil: an eco-epidemiological approach. Revista Brasileira de Parasitologia Veterinária 25(2): 196–201. https://doi.org/10.1590/S1984-29612016033
[47] Wendt E.W., Monteiro C.M., Amato S.B. 2018. Helminth fauna of Megaleporinus obtusidens (Characiformes: Anostomidae) from Lake Guaíba: analysis of the parasite community. Parasitology Research 117(2): 2445–2456. https://doi.org/10.1007/s00436-018-5933-4
[48] Santos S.M.C., Ceccarelli P.S., Rego R.F. 2003. Helmintos em peixes do Pantanal Sul-Matogrossense: primeira expedição do Programa Pantanal. Boletim Técnico Cepta 16: 15–26.
[49] Feltran R.B., Marçal Júnior O., Pinese J.F., Takemoto R.M. 2004. Prevalência, abundância, intensidade e amplitude de infecção de nematóides intestinais em Leporinus frideiri (Bloch, 1794) e Leporinus obtusidens (Valenciennes, 1836) (Pisces, Anostomidae), na represa de Nova Ponte (Perdizes- MG). Revista Brasileira de Zoociências 6(2): 169– 179.
[50] Lima M.A. 2010. A fauna de parasitas de Serrasalmus rhombeus (Linneaus, 1776) (Characiformes: Characidae) de lagos de várzea da Amazônia Central. Dissertação, Universidade do Amazonas.
[51] Hoshino M.D.F.G., Tavares-Dias M. 2014. Ecology of parasites of Metynnis lippincottianus (Characiformes: Serrasalmidae) from the eastern Amazon region, Macapá, State of Amapá, Brazil. Acta Scientiarum Biological Sciences 36(2): 249– 255. https://doi.org/10.4025/actascibiolsci.v36i2.19876
[52] Baia R.R.J., Florentino A.C., Silva L.M.A., Tavares- Dias M. 2018. Patterns of the parasite communities in a fish assemblage of a river in the Brazilian Amazon region. Acta Parasitologica 63(2): 304–316. https://doi.org/10.1515/ap-2018-0035
[53] Oliveira M.S.B., Tavares-Dias M. 2016. Communities of parasite metazoans in Piaractus brachypomus (Pisces, Serrasalmidae) in the lower Amazon River (Brazil). Revista Brasileira Parasitologia Veterinária 25(2): 151–157. https://doi.org/10.1590/S1984-29612016022
[54] Cohen S.C., Justo M.C.N., Cárdenas M.Q., Meneses Y.C., Bezerra C.A.M., Viana D.C. 2020. Conceitos básicos e estado da arte dos helmintos parasitos de peixes da bacia Tocantins-Araguaia. In: Conhecimentos teóricos, metodológicos e empíricos para o avanço da sustentabilidade no Brasil. (Ed. J.A. Prandel). Atena Editora. Ponta Grossa-PR. https://doi.org/10.22533/at.ed.9432030015
[55] Yamada F.H., Takemoto R.M. 2013. Metazoan parasite fauna of two peacock-bass cichlid fish in Brazil. Check List 9(6): 1371–1377. https://doi.org/10.15560/9.6.1371
[56] Brasil-Sato M.C., Santos M. 2003. Helmintos de Myleus micans (Lütken, 1875) (Characiformes: Serrasalminae) do Rio São Francisco, Brasil. Revista Brasileira Parasitologia Veterinária 12(3): 131–134.
[57] Oliveira M.S.B., Corrêa L.L., Tavares-Dias M. 2019. Helminthic endofauna of four species of fish from lower Jari River, a tributary of the Amazon basin in Brazil. Boletim do Instituto de Pesca 45(1): e.393. https://doi.org/10.20950/1678-2305.2019.45.1.393
[58] Cavalcante P.H.O., Silva M.T., Pereira A.N.S., Gentile R., Santos C.P. 2020. Helminth diversity in Pimelodus blochii Valenciennes, 1840 (Ostheichthyes: Pimelodidae) in two Amazon Rivers. Parasitology Research 119(12): 4005–4015. https://doi.org/10.1007/s00436-020-06906-x
[59] Mujica M.E. 1982. Estudios preliminares sobre enfermedades que afectan a los peces de aguas cálidas continentales aptos para el cultivo en la Estación Hidrobiológica de Guanapito, Estado Guárico, Venezuela. Thesis, Universidad Central de Venezuela (UCV), Caracas.
[60] Moravec F., Kohn A., Fernandes B.M.M. 1993. Nematode parasites of fishes of the Paraná River, Brazil. Part. 3. Camallanoidea and Dracunculoidea. Folia Parasitologica 41: 211–229.
[61] Moravec F., Kohn A., Fernandes B.M.M. 1997. New observations on seuratoid nematodes parasitic in fishes of the Paraná River, Brasil. Folia Parasitologica 44: 209–223.
[62] Petter A.J. 1995. Dichelyne moraveci n. sp., parasite de Pseudoplatystoma fasciatum et notes sur les Cucullanidae du Paraguay. Revue Suisse Zoologie 102: 769–778.
[63] Moravec F., Thatcher V.E. 1996. Myleusnema bicornis gen. et sp. n. (Nematoda: Kathlaniidae), an intestinal parasite of a freshwater serrasalmid fish, Myleus ternetzi, from French Guiana. Folia Parasitologica 43: 53–59.
[64] Abdallah V.D., Azevedo R., Carvalho E., Da Silva R. 2012. New host and distribution records for nematode parasites of freshwater fishes from Sao Paulo State, Brazil. Neotropical Helminthology 6(1): 43–57.
[65] Dias M.K.R., Neves L.R., Marinho R.G.B., Tavares- Dias M. 2015. Parasitic infections in tambaqui from eight fish farms in Northern Brazil. Arquivos Brasileiros de Medicina Veterinária e Zootecnia 67(4): 1070–7076.
[66] Amaral R.B., Leão G.R., Campos T.N.S., Borges K.M., Grano-Maldonado M.I., Lino C.N.R., Takemoto R.M., Rocha T.L., Damacena-Silva L. 2023. Abundance of Procamallanus (Spirocama - llanus) inopinatus (Nematoda: Camalla nidae) in Characiformes fish and associated factors in Midwest Brazil. Anais da Academia Brasileira de Ciências 95: e20220978. https://doi.org/10.1590/0001 3765202320220978
[67] Vicentin W., Vieira K.R.I., Tavares L.E.R., Costa F.E.S., Takemoto R.M., Paiva F. 2013. Metazoan endoparasites of Pygocentrus nattereri (Characiformes: Serrasalminae) in the Negro River, Pantanal, Brazil. Revista Brasileira de Parasitologia Veterinária 22(3): 331–338. https://doi.org/10.1590/S1984-29612013000300003
[68] Santos-Clapp M.D., Duarte R., Albuquerque M.C., Brasil-Sato M.C. 2022. Helminth endoparasites of endemic fish Pygocentrus piraya (Characiformes, Serrasalmidae) from Três Marias reservoir, Minas Gerais, Brazil. Anais da Academia Brasileira de Ciências 94(4): 1–14. https://doi.org/10.1590/0001 3765202220201425
[69] Vicentin W., Vieira K.R.I., Costa F.E.S., Takemoto R.M., Tavares L.E.R., Paiva F. 2011. Metazoan endoparasites of Serrasalmus marginatus (Characiformes: Serrasalminae) in the Negro River, Pantanal, Brazil. Revista Brasileira de Parasitologia Veterinária 20(1): 61–63. https://doi.org/10.1590/S1984-29612011000100012
[70] Cuadros R.C., Rivadeneyra N.L.S., Malta J.C.O., Serrano-Martinéz M.E., Mathews P.D. 2018. Morphology and surface ultrastructure of Dadaytrema oxycephala (Digenea: Cladorchiidae) with a new host record from Peruvian Amazon floodplain. Biology 73(6): 569–575. https://doi.org/10.2478/s11756-018-0072-z
[71] Negreiros L.P., Pereira F.B., Tavares-Dias M. 2019.. Dadaytrema oxycephala (Digenea: Cladorchiidae) in definitive host Pimelodus blochii (Pisces: Pimelodidae), with morphological and geographic distribution data in fishes from the South America. Journal of Parasitic Diseases 44(2): 62 –68. https://doi.org/10.1007/s12639-019-01161-z
[72] Centeno L., Altuve D., Gil H., Matute H.C., Pérez J.L., Lunar J.L.T., Urbaneja A. 2006. Evaluación parasitaria y hematológica en peces silvestres del Delta del Río Orinoco, Venezuela. Memorias XIII Congreso Venezolano de Industria y Producción Animal, Venezuela.
[73] Parra J.E.G., Brandão D.A., Ceccarelli P.S. 1997. Identificação e prevalência de nematódeos do pacu Piaractus mesopotamicus (Holmberg, 1887), da estação de piscicultura do CEPTA, Pirassununga, SP, Brasil. Ciência Rural 27(2): 291–295. https://doi.org/10.1590/S0103-84781997000200020
[74] Moravec F., Thatcher V.E. 1999. Myleusnema brasiliense sp. n. (Nematoda: Kathlaniidae), a new intestinal parasite of the serrasalmid fish Myleus sp. in Brazil. Folia Parasitologica 46: 216–220.
[75] Eschmeyer W.N., Fricke R., Van Der Laan R. 2021. Catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research/ ichthyology/catalog/fishcatmain. asp (accessed August 30, 2021).
[76] Rohde K., Heap M. 1998. Latitudinal differences in species and community richness and in community structure of metazoan endo and ectoparasites of marine teleost fish. International Journal for Parasitology 28(3): 461–474. https://doi.org/10.1016/S0020-7519(97)00209-9
[77] Poulin R. 2001. Another look at the richness of helminth communities in tropical freshwater fish. Journal of Biogeography 28(6): 737–743. https://doi.org/10.1046/j.1365-2699.2001.00570.x
[78] Blanar C.A., Hewitt M., Mcmaster M., Kirk J., Wang Z., Norwood W., Marcogliese D.J. 2016. Parasite community similarity in Athabasca River trout-perch (Percopsis omiscomaycus) varies with local-scale land use and sediment hydrocarbons, but not distance or linear gradients. Parasitology Research 115(10): 3853–3866. https://doi.org/10.1007/s00436-016-5151-x
[79] López Martínez J., Velásquez Trujillo L.E. 2012. Cotylophoron panamensis (Digenea: Paramphistomidae) in cattle from Meta and Guaviare, Colombia. Acta Biológica Colombiana 17(2): 421– 430.
[80] Morley N.J. 2012. Cercariae (Platyhelminthes: Trematoda) as neglected components of zooplankton communities in freshwater habitats. Hydrobiologia 691: 7–10.
[81] Abdel-Karim M.S. 2020. Biomonitoring and bioassessment of running water quality in developing countries: a case study from Egypt. Egyptian Journal of Aquatic Research 46(4): 313–324. https://doi.org/10.1016/j.ejar.2020.11.003
[82] Kumari P., Maiti S.K. 2020. Bioassessment in the aquatic ecosystems of highly urbanized agglomeration in India: an application of physicochemical and macroinvertebrate-based indices. Ecological Indicators 111: 2–12. https://doi.org/10.1016/j.ecolind.2019.106053
[83] Camargo A.A., Negrelli D.C., Pedro N.H.O., Azevedo R.K., Silva R.J., Abdallah V.D. 2016. Metazoan parasite of lambari Astyanax altiparanae, collected from the Peixe river, São Paulo, southeast of Brazil. Ciência Rural 46(5): 876–880. https://doi.org/10.1590/0103-8478cr20151100
[84] Poulin R. 2020. Meta-analysis of seasonal dynamics of parasite infections in aquatic ecosystems, International Journal for Parasitology 50(6–7): 501– 510. https://doi.org/10.1016/j.ijpara.2020.03.006
[85] Zar J.H. 1999. Biostatistical analysis. Prentice Hall, Fourth Edition, New Jersey.