An insight into the role of artificial intelligence in combating malaria: recent developments
DOI:
https://doi.org/10.17420/ap71.545Keywords:
malaria, artificial intelligence, control, treatment, PlasmodiumAbstract
In order to overcome obstacles in diagnosis, surveillance, treatment, and vector control, artificial intelligence (AI) has emerged as a crucial weapon in the fight against malaria. The eradication of malaria has benefited greatly from the exceptional accuracy and efficiency of AI-driven solutions. This review of the literature examines several uses of AI in the fight against malaria, emphasizing new developments. AI-driven solutions have the potential to improve malaria prevention and eradication efforts with sustained innovation and investment, ultimately enhancing global health security. AI is transforming the treatment of malaria by facilitating personalised medicine, speeding up drug discovery, and enhancing diagnostics. AI is improving treatment approaches and tackling the problems caused by drug-resistant malaria parasites through machine learning, deep learning, and in silico drug repurposing. Achieving long-term malaria eradication targets will require sustained investment in AI-driven malaria research. In epidemiological tracking, artificial intelligence (AI) has also become a potent instrument. AI-driven methods offer creative ways to find novel treatment approaches, maximize drug discovery, and forecast the dynamics of malaria transmission, especially in light of the growing resistance of Plasmodium parasites to current medications. Thus, this review paper provides insights into the developments made by AI in combating malaria.
References
[1] Global Malaria Programme operational strategy 2024–2030. Geneva: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO.
[2] Benavente E.D., Campos M., Phelan J., Nolder D., Dombrowski J.G., Marinho C.R.F., Sriprawat K., Taylor A.R., Watson J., Roper C., Nosten F., Sutherland C.J., Campino S., Clark T.G. 2020. A molecular barcode to inform the geographical origin and transmission dynamics of Plasmodium vivax malaria. PLoS Genetics 16(2): e1008576. https://doi.org/10.1371/journal.pgen.1008576
[3] Trujillano F., Jimenez Garay G., Alatrista Salas H., Byrne I., N..ez-del-Prado M., Fornace K. 2023. Mapping malaria vector habitats in West Africa: drone imagery and deep learning analysis for targeted vector surveillance. Remote Sensing 15(11): 2775. https://doi.org/10.3390/rs15112775
[4] Mariki M., Mkoba E., Mduma N. 2022. Combining clinical symptoms and patient features for malaria diagnosis: machine learning approach. Applied Artificial Intelligence 36(1): e2031826. https://doi.org/10.1080/08839514.2022.2031826
[5] Nabet C., Chaline A., Franetich J.F., Brossas J., Shahmirian N., Silvie O., Piarroux R. 2020. Prediction of malaria transmission drivers in Anopheles mosquitoes using artificial intelligence coupled to MALDI-TOF mass spectrometry. Scientific Reports 10: 11379. https://doi.org/10.1038/s41598-020-68272-z
[6] Barnes K.G., Weedall G.D., Ndula M., Irving H., Mzihalowa T., Hemingway J., Wondji C.S. 2017. Genomic footprints of sweeps from metabolic resistance to pyrethroids in African malaria vectors are driven by scale up of insecticide-based vector control. PLoS Genetics 13(2): e1006539. https://doi.org/10.1371/journal.pgen.1006539
[7] Kouassi B.L., Edi C., Ouattara A.F., Ekra A.K., Bellai L.G., Gouam.n. J., Kacou Y.A.K., Kouam. J.K.I., B.k. A.O., Yokoli F.N., Gbalegba C.G.N., Tia E., Yapo R.M., Konan L.Y., N’Tamon R.N., Akr. M.A., Koffi A.A., Tanoh A.M., Zinzindohou. P., Kouadio B., Yepassis-Zembrou P.L., Belemvire A., Irish S.R., Ciss. N.G., Flatley C., Chabi J. 2023. Entomological monitoring data driving decision-making for appropriate and sustainable malaria vector control in C.te d’Ivoire. Malaria Journal 22(1): 14. https://doi.org/10.1186/s12936-023-04439-z
[8] Siłka W., Wieczorek M., Siłka J., Woźniak M. 2023. Malaria detection using advanced deep learning architecture. Sensors 23(3): 1501. https://doi.org/10.3390/s23031501
[9] Cho Y.S., Hong P.C. 2023. Applying machine learning to healthcare operations management: CNN-based model for malaria diagnosis. Healthcare (Basel) 11(12): 1779. https://doi.org/10.3390/healthcare11121779
[10] Arshadi A.K., Salem M., Collins J., Yuan J.S., Chakrabarti D. 2020. DeepMalaria: artificial intelligence driven discovery of potent antiplasmodials. Frontiers in Pharmacology 15(10): 1526. https://doi.org/10.3389/fphar.2019.01526
[11] Ghosh B., Choudhuri S. 2021. Drug design for malaria with artificial intelligence (AI). Plasmodium species and drug resistance. IntechOpen 2021. https://doi.org/10.5772/intechopen.91077
[12] Tai K.Y., Dhaliwal J. 2022. Machine learning model for malaria risk prediction based on mutation location of large-scale genetic variation data. Journal of Big Data 9: 85. https://doi.org/10.1186/s40537-022-00635-x
[13] USF using AI to help combat malaria in Africa. 2024. University of South Florida. https://www.usf.edu/news/2024/usf-using-ai-to-helpcombat- malaria-in-africa.aspx.
[14] Mujahid M., Rustam F., Shafique R., Montero E.C., Alvarado E.S., Torre Diez I., Ashraf I. 2024. Efficient deep learning-based approach for malaria detection using red blood cell smears. Scientific Reports 14(1): 13249. https://doi.org/10.1038/s41598024638310
[15] Mitrovic K., Milošević D. 2021. Classification of malaria-infected cells using convolutional neural networks. IEEE Symposium on Applied Computational Intelligence and Informatics. Timisoara, Romania, 2021: 000323–000328. https://doi.org/10.1109/SACI51354.2021.9465636
[16] ZzappMalaria. (n.d.). Malaria Elimination Software. https://www.zzappmalaria.com
[17] Nazi S.K., Mariam Z. 2023. Computer-aided drug design and drug discovery: a prospective analysis. Pharmaceuticals 17(1): 22. https://doi.org/10.3390/ph17010022
[18] Mullins J. 2022. Drug repurposing in silico screening platforms. Biochemical Society Transactions 50(2): 747–758. https://doi.org/10.1042/BST20200967