Biology and genetics of the poultry red mite (Dermanyssus gallinae) – new targets for eradicating and controlling invasion

Authors

  • Sylwia Koziatek-Sadłowska Department of Parasitology and Invasive Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland

DOI:

https://doi.org/10.17420/ap71.541

Keywords:

PRM, laying hen, ectoparasite, control, combat strategy, control target

Abstract

Dermanyssus gallinae is considered to be one of the world’s most troublesome ectoparasites of laying hens, with the consequences for the hens being reflected in production rates, including reduced egg quantity and quality. Despite intensive efforts to develop research on this mite, it remains challenging to combat. This article reviews current and recent knowledge on the biology and genetics of D. gallinae, and new targets for control are discussed as identified by the authors of recent publications. It is imperative to acknowledge the significance of this knowledge in order to facilitate the identification of genetic markers associated with the emergence of acaricide resistance. This, in turn, will enable the development of alternative strategies and methods to control D. gallinae

References

[1] Sparagano O.A.E., Pavlicevic A., Murano T., Camarda A., Sahibi H., Kilpinen O., Mul M., van Emous R.A., le Bouquin S., Hoel K., Cafiero M.A. 2009. Prevalence and key figures for the poultry red mite Dermanyssus gallinae infections in poultry farm systems. Experimental and Applied Acarology 48: 3–10. https://doi.org/10.1007/s10493-008-9233-z

[2] Wood H.P. 1917. The chicken mite: its life history and habits. U.S. Department of Agriculture Washington Dc. Bulletin 553: 1–14. https://doi.org/10.5962/bhl.title.108752

[3] Nakamae H., Fujisaki K., Kishi S., Yashiro M., Oshiro S., Furuta K. 1997. The new parasitic ecology of chicken mites Dermanyssus gallinae, parasitizing and propagating on chickens even in the daytime. Journal of Poultry Science 34: 110–116. https://doi.org/10.2141/JPSA.34.110

[4] Chauve C. 1998. The poultry red mite Dermanyssus gallinae: current situation and future prospects. Veterinary Parasitology 8: 364–376. https://doi.org/10.1016/s0304-4017(98)00167-8

[5] Sokół _R., Romaniuk K. 2007. Przebieg i dynamika inwazji Dermanyssus gallinae w fermie kur niosek [Invasion of Dermanyssus gallinae in a laying hen farm]. Medycyna Weterynaryjna 63(4): 484–486 (in Polish with summary in English).

[6] Fiddes M.D., Le Gresley S., Parsons D.G., Epe C., Coles G.C., Stafford K.A. 2005. Prevalence of the poultry red mite (Dermanyssus gallinae) in England. Veterinary Record 157: 233–235. https://doi.org/10.1136/vr.157.8.233

[7] Hoglund J., Nordenfors H., Uggla A. 1995. Prevalence of the poultry red mite, Dermanyssus gallinae, in different types of production systems for egg layers in Sweden. Poultry Science 74: 1793–1798. https://doi.org/10.3382/ps.0741793

[8] Wójcik A.R., Grygon-Franckiewicz B., Zbikowska E., Wasielewski L. 2000. Invasion of Dermanyssus gallinae (De Geer, 1778) in poultry farms in the Toruń _region. Wiadomości Parazytologiczne 46(4): 511–515 (in Polish with summary in English).

[9] Cencek T., Ziomko I., Topór W. 2002. Inwazja Dermanyssus gallinae przyczyną masowych padnięć kacząt brojlerów. Medycyna Weterynaryjna 58(5): 353–355 (in Polish with summary in English).

[10] Cencek T. 2003. Prevalence of Dermanyssus gallinae in poultry farms in Silesia region in Poland. Bulletin of the Veterinary Institute in Pulawy 47(2): 465–469.

[11] Guy J.H., Khajavi M., Hlalel M.M., Sparagano O.A.E. 2004. Red mite (Dermanyssus gallinae) prevalence in laying units in northern England. British Poultry Sciences 45: 5–6. https://doi.org/10.1080/00071660410001698001

[12] van Emous R.A. 2005. Wage war against the red mite! Poultry International 44: 26–33.

[13] Flochlay A.S., Thomas E., Sparagano O.A.E. 2017. Poultry red mite (Dermanyssus gallinae) infestation: a broad impact parasitological disease that still remains a significant challenge for the egg-laying industry in Europe. Parasites Vectors 10(1): 357. https://doi.org/10.1186/s13071-017-2292-4

[14] Roy L., Dowling A.P.G., Chauve C.M., Buronfosse T. 2009. Delimiting species boundaries within Dermanyssus duges, 1834 (Acari: Dermanyssidae) using a total evidence approach. Molecular Phylogenetics and Evolution 50: 446–470. https://doi.org/10.1016/j.ympev.2008.11.012

[15] Marangi M., Cafiero M.A., Capelli G., Camarda A., Sparagano O.A.E., Giangaspero A. 2009. Evaluation of the poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae), susceptibility to some acaricides in field populations from Italy. Experimental and Applied Acarology 48: 11–18. https://doi.org/10.1007/s10493-008-9224-0

[16] Chu T.T., Murano T., Uno Y., Usui T., Yamaguchi T. 2015. Molecular epidemiological characterization of poultry red mite, Dermanyssus gallinae, in Japan. Journal of Veterinary Medicinal Science 77(11): 1397–1403. https://doi.org/10.1292/jvms.15-0203

[17] Koziatek S., Sokół _R. 2015. Dermanyssus gallinae still poses a serious threat for the rearing of laying hens. Polish Journal of Natural Sciences 30(4): 451–463.

[18] Boczek J., Błaszak C. 2016. Roztocze (Acari) znaczenie w życiu i gospodarce człowieka. Wyd. SGGW, Warszawa (in Polish).

[19] Moss W.W. 1978. The mite genus Dermanyssus: a survey, with description of Dermanyssus trochilinis, n. sp., and a revised key to the species (Acari: Mesostigmata: Dermanyssidae). Journal of Medicinal Entomology 14: 627–640. https://doi.org/10.1093/jmedent/14.6.627

[20] Maurer V., Baumgartner J. 1992. Temperature influence on life table statistics of the chicken mite Dermanyssus gallinae (Acari: Dermanyssidae). Experimental & Applied Acarology 15: 27–40. https://doi.org/10.1007/bf01193965

[21] Nordenfors H., Hoglund J., Uggla A. 1999. Effects of temperature and humidity on oviposition, molting, and longevity of Dermanyssus gallinae (Acari: Dermanyssidae). Journal of Medical Entomology 36: 68–72. https://doi.org/10.1093/jmedent/36.1.68

[22] Oliver Jr. J.H. 1966. Notes on reproductive behavior in the Dermanyssidae (Acarina: Mesostigmata). Journal of Medical Entomology 3(1): 29–35. https://doi.org/10.1093/jmedent/3.1.29

[23] Liu B., He J., Liu Q., Wang B., Xiong M., Sun W., Pan B. 2025. Male mites are the promising targets for control of Dermanyssus gallinae (Acari: Dermanyssidae) based on the reproductive biology research. Veterinary Parasitology (334): 110411. https://doi.org/10.1016/j.vetpar.2025.110411

[24] Bartley K., Wright H.W., Huntley J.F., Manson E.D., Inglis N.F., McLean K., Nisbet A.J. 2015. Identification and evaluation of vaccine candidate antigens from the poultry red mite (Dermanyssus gallinae). International Journal for Parasitology 45(13): 819–830. https://doi.org/10.1016/j.ijpara.2015.07.004

[25] Ribeiro J.M., Hartmann D., Bartošová-Sojková P., Debat H., Moos M., Šimek P., Perner J. 2023. Blood-feeding adaptations and virome assessment of the poultry red mite Dermanyssus gallinae guided by RNA-seq. Communications Biology 6(1): 517. https://doi.org/10.1038/s42003-023-04907-x

[26] Liu Q., Liu B., Sun T., Wang P., Sun W., Pan B. 2024. Vitellogenin and its upstream gene TOR play essential roles in the reproduction of Dermanyssus gallinae. Experimental Parasitology 260: 108746. https://doi.org/10.1016/j.exppara.2024.108746

[27] Wang B., Meng J., Qi X., Wang P., Liu Q., Wang L., Sun W., Pan B. 2024. Surface hydrophobicity mechanism of poultry red mite, Dermanyssus gallinae (Acari: Dermanyssidae), gives novel meaning to chemical control. Veterinary Parasitology 332: 110327. https://doi.org/10.1016/j.vetpar.2024.110327

[28] Liu Q., Sun T., Wang P., Wang L., Frantova H., Hartmann D., Perner J., Sun W., Pan B. 2024. Significant role of symbiotic bacteria in the blood digestion and reproduction of Dermanyssus gallinae mites. ISME Communications 4(1): 127. https://doi.org/10.1093/ismeco/ycae127

[29] Roy L., Chauve C.M., Buronfosse T. 2010. Contrasted ecological repartition of the northern fowl mite Ornithonyssus sylviarum (Mesostigmata: Macronyssidae) and the chicken red mite Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Acarologia 50(2): 207–219. https://doi.org/10.1051/acarologia/20101958

[30] Øines Ø., Brännström S. 2011. Molecular investigations of cytochrome c oxidase subunit I (COI) and the internal transcribed spacer (ITS) in the poultry red mite, Dermanyssus gallinae, in northern Europe and implications for its transmission between laying poultry farms. Medical and Veterinary Entomology 25(4): 402–412. https://doi.org/10.1111/j.1365-2915.2011.00958.x

[31] Karp-Tatham E., Küster T., Angelou A., Papadopoulos E., Nisbet A.J., Xia D., Tomley F.M., Blake D.P. 2020. Phylogenetic inference using cytochrome c oxidase subunit I (COI) in the poultry red mite, Dermanyssus gallinae in the United Kingdom relative to a European framework. Frontiers in Veterinary Sciences 7: 553. https://doi.org/10.3389/fvets.2020.00553

[32] Koziatek-Sadłowska S., Sokół _R. 2022. Genetic characterization of the poultry red mite (Dermanyssus gallinae) in Poland and a comparison with European and Asian isolates. Pathogens 11(11): 1301. https://doi.org/10.3390/pathogens11111301

[33] Sparagano O.A.E., George D.R., Harrington D.W., Giangaspero A. 2014. Significance and control of the poultry red mite, Dermanyssus gallinae. Annual Reviev of Entomology 59: 447–466. https://doi.org/10.1146/annurev-ento-011613-162101

[34] Beugnet F., Chauve C., Gauthey M., Beert L. 1997. Resistance of the red poultry mite to pyrethroids in France. Veterinary Record 140(22): 577–579. https://doi.org/10.1136/vr.140.22.577

[35] Guerrini A., Morandi B., Roncada P., Brambilla G., Dini F.M., Galuppi R. 2022. Evaluation of the acaricidal effectiveness of fipronil and phoxim in field populations of Dermanyssus gallinae (De Geer, 1778) from ornamental poultry farms in Italy. Veterinary Sciences 9(9): 486. https://doi.org/10.3390/vetsci9090486

[36] Nordenfors H., Höglund J., Tauson R., Chirico J. 2001. Effect of permethrin impregnated plastic strips on Dermanyssus gallinae in loose-housing systems for laying hens. Veterinary Parasitology 102(1–2): 121–131. https://doi.org/10.1016/s0304-4017(01)00528-3

[37] Katsavou E., Vlogiannitis S., Karp-Tatham E., Blake D.P., Ilias A., Strube C., Vontas J. 2020. Identification and geographical distribution of pyrethroid resistance mutations in the poultry red mite Dermanyssus gallinae. Pest Management Science 76(1): 125–133. https://doi.org/10.1002/ps.5582

[38] Schiavone A., Price D.R., Pugliese N., Burgess S.T., Siddique I., Circella E., Camarda A. 2023. Profiling of Dermanyssus gallinae genes involved in acaricide resistance. Veterinary Parasitology 319: 109957. https://doi.org/10.1016/j.vetpar.2023.109957

[39] Zhang X., Zhang Y., Xu K., Qin J., Wang D., Xu L., Wang C. 2024. Identification and biochemical characterization of a carboxylesterase gene associated with β-cypermethrin resistance in Dermanyssus gallinae. Poultry Science 103(5): 103612. https://doi.org/10.1016/j.psj.2024.103612

[40] Wang P., Li H., Meng J., Liu Q., Wang X., Wang B., Liu B., Wang C., Sun W., Pan B. 2024. Activation of CncC pathway by ROS burst regulates ABC transporter responsible for beta-cypermethrin resistance in Dermanyssus gallinae (Acari: Dermanyssidae). Veterinary Parasitology 327: 110121. https://doi.org/10.1016/j.vetpar.2024.110121

[41] Wang P., Liu Q., Sun T., Wang X., Wang B., Liu B., Li H., Wang C., Sun W., Pan B. 2024. Identification and transcriptional response of ATP-binding cassette transporters to beta-cypermethrin in the poultry red mite, Dermanyssus gallinae. Pesticide Biochemistry and Physiology 202: 105960. https://doi.org/10.1016/j.pestbp.2024.105960

[42] Wilding C.S. 2018. Regulating resistance: CncC: Maf, antioxidant response elements and the overexpression of detoxification genes in insecticide resistance. Current Opinion in Insect Science 27: 89–96. https://doi.org/10.1016/j.cois.2018.04.006

[43] Wang P., Liu Q., Wang X., Sun T., Liu B., Wang B., Li H., Wang C., Sun W., Pan B. 2024. Point mutations in the voltage-gated sodium channel gene conferring pyrethroid resistance in China populations of the Dermanyssus gallinae. Pest Management Science 80(10): 4950–4958. https://doi.org/10.1002/ps.8223

[44] Harrington D., Canales M., De La Fuente J., De Luna C., Robinson K., Guy J., Sparagano O. 2009. Immunisation with recombinant proteins subolesin and bm86 for the control of Dermanyssus gallinae in poultry. Vaccine 27(30): 4056–4063. https://doi.org/10.1016/j.vaccine.2009.04.014

[45] Price D.R.G., Küster T., Øines Ø., Oliver E.M., Bartley K., Nunn F., Lima Barbero J.F., Pritchard J., Karp-Tatham E., Hauge H., Blake D.P., Tomley F.M., Nisbet A.J. 2019. Evaluation of vaccine delivery systems for inducing long-lived antibody responses to Dermanyssus gallinae antigen in laying hens. Avian Pathology 48(1): 60–74. https://doi.org/10.1080/03079457.2019.1612514

[46] Lima-Barbero J.F., Contreras M., Bartley K., Price D.R.G., Nunn F., Sanchez-Sanchez M., Prado E., Höfle U., Villar M., Nisbet A.J., de la Fuente J. 2019. Reduction in oviposition of poultry red mite (Dermanyssus gallinae) in hens vaccinated with recombinant akirin. Vaccines 7(3): 12. https://doi.org/10.3390/vaccines7030121

[47] Lima-Barbero J.F., Contreras M., Mateos-Hernández L., Mata-Lorenzo F.M., Triguero-Ocaña R., Sparagano O., Finn R.D., Strube C., Price D.R.G., Nunn F., Bartley K., Höfle U., Boadella M., Nisbet A.J., Fuente J., Villar M. 2019. A vaccinology approach to the identification and characterization of Dermanyssus gallinae Candidate protective antigens for the control of poultry red mite infestations. Vaccines 7(4): 190. https://doi.org/10.3390/vaccines7040190

[48] Decru E., Mul M., Nisbet A.J., Vargas Navarro A.H., Chiron G., Walton J., Norton T., Roy L., Sleeckx N. 2020. Possibilities for IPM strategies in European laying hen farms for improved control of the poultry red mite (Dermanyssus gallinae): details and state of affairs. Frontiers in Veterinary Science. 7. https://doi.org/10.3389/fvets.2020.565866

Downloads

Published

2025-06-10

How to Cite

Koziatek-Sadłowska, S. (2025). Biology and genetics of the poultry red mite (Dermanyssus gallinae) – new targets for eradicating and controlling invasion. Annals of Parasitology, 71, 19–25. https://doi.org/10.17420/ap71.541

Issue

Section

Review articles