The interplay between Blastocystis and human gut microbiota
DOI:
https://doi.org/10.17420/ap71.557Keywords:
Blastocystis, gut microbiota, interactionAbstract
Gut microbiota, consisting of multiple beneficial microorganisms, significantly impacts host health. Recent investigations have revealed that the gut microbiota influences the pathogenicity of eukaryotes such as Blastocystis, and conversely, the protist can impact the composition of the bacterial community. This review focuses on both, beneficial and adverse interactions between Blastocystis and human gut microbiota communities. Blastocystis can modulate both the structure and composition of the gut microbiota. Research has demonstrated that Blastocystis colonization is associated with increased gut microbiota diversity, a higher abundance of beneficial bacteria like Firmicutes and Clostridiales, and reduced Bacteroides, indicating a potential beneficial relation. However, its exact role is still unknown, and it may be associated with dysbiosis in some gastrointestinal disorders such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). Moreover, some researchers presented the contradictory study results of interactions between specific Blastocystis subtypes and gut bacteria. The bidirectional influence between microorganisms is complex, with distinct subtypes that can display varying effects on the microbiota. These discrepant findings might reflect variations in the host factors, microbial environment, or strain-level diversity.
References
[1] Stensvold C.R, Tan K.S.W., Clark C.G. 2020. Blastocystis. Trends in Parasitology 36: 315–316. https://doi.org/10.1016/j.pt.2019.12.008
[2] Scanlan P.D., Stensvold C.R., Rajilić-Stojanović M., Heilig H.G.H.J., De Vos W.M., O’Toole P.W., Cotter P.D. 2014. The microbial eukaryote Blastocystis is a prevalent and diverse member of the healthy human gut microbiota. FEMS Microbiology Ecology 90: 326–330. https://doi.org/10.1111/1574-6941.12396
[3] Stensvold C.R., Clark C.G. 2016. Current status of Blastocystis: A personal view. Parasitology International 65: 763–771. https://doi.org/10.1016/j.parint.2016.05.015
[4] Maloney J.G., Molokin A., Seguí R., Maravilla P., Martínez-Hernández F., Villalobos G., Tsaousis A.D., Gentekaki E., Muñoz-Antolí C., Klisiowicz D.R., Oishi C.Y., Toledo R., Esteban J.G., Köster P.C., de Lucio A., Dashti A., Bailo B., Calero-Bernal R., González-Barrio D., Carmena D., Santín M. 2022. Identification and molecular characterization of four new Blastocystis subtypes designated ST35–ST38. Microorganisms 11(1): 46. https://doi.org/10.3390/microorganisms11010046
[5] Koehler A.V., Herath H.M.P.D., Hall R.S., Wilcox S., Gasser R.B. 2023. Marked genetic diversity within Blastocystis in Australian wildlife revealed using a next generation sequencing-phylogenetic approach. International Journal for Parasitology. Parasites and Wildlife 23: 100902. https://doi.org/10.1016/j.ijppaw.2023.100902
[6] Jinatham V., Yowang A., Stensvold C.R., Michalopoulou E., Vichasilp T., Suwannahitatorn P., Popluechai S., Tsaousis A.D., Gentekaki E. 2024. Blastocystis colonization and associations with population parameters in Thai adults. PLoS Neglected Tropical Diseases 18(7): e0012292. https://doi.org/10.1371/journal.pntd.0012292
[7] Hernández-Castro C., Maloney J.G., Agudelo-López S.P., Toro-Londoño M.A., Botero-Garcés J.H., Orozco M.C., Quintero-Quinchia Y.C., Correa-Cote J.C., Múnera-Duque A., Ricaurte-Ciro J.C., Londoño-Álvarez L.I., Escobar R.M., Köster P.C., Sánchez S., Carmena D., Santín M. 2023. Identification and validation of novel Blastocystis subtype ST41 in a Colombian patient undergoing colorectal cancer screening. The Journal of Eukaryotic Microbiology 70(5): e12978. https://doi.org/10.1111/jeu.12978
[8] Sarzhanov F., Dogruman-Al F., Santin M., Maloney J.G., Gureser A.S., Karasartova D., Taylan-Ozkan A. 2021. Investigation of neglected protists Blastocystis sp. and Dientamoeba fragilis in immunocompetent and immunodeficient diarrheal patients using both conventional and molecular methods. PLoS Neglected Tropical Diseases 15(10): e0009779. https://doi.org/10.1371/journal.pntd.0009779
[9] Matovelle C., Tejedor M.T., Monteagudo L.V., Beltrán A., Quílez J. 2022. Prevalence and associated factors of Blastocystis sp. infection in patients with gastrointestinal symptoms in Spain: a case-control study. Tropical Medicine and Infectious Disease 7: 226. https://doi.org/10.3390/tropicalmed7090226
[10] Bahrami F., Babaei E., Badirzadeh A., Riabi T.R., Abdoli A. 2019. Blastocystis, urticaria, and skin disorders: review of the current evidences. European Journal of Clinical Microbiology & Infectious Diseases 39: 1027–1042. https://doi.org/ 10.1007/s10096-019-03793-8
[11] Aykur M., Camyar A., Turk B.G., Sin A.Z., Dagci H. 2022. Evaluation of association with subtypes and alleles of Blastocystis with chronic spontaneous urticaria. Acta Tropica 231: 106455. https://doi.org/ 10.1016/j.actatropica.2022.106455
[12] Rojas-Velázquez L., Morán P., Serrano-Vázquez A., Portillo-Bobadilla T., González E., Pérez-Juárez H., Hernández E., Partida-Rodríguez O., Nieves-Ramírez M., Padilla A., Zaragoza M., Ximénez C. 2022. The regulatory function of Blastocystis spp. on the immune inflammatory response in the gut microbiome. Frontiers in Cellular and Infection Microbiology 12: 967724. https://doi.org/10.3389/fcimb.2022.967724
[13] Deng L., Wojciech L., Gascoigne N.R.J., Peng G., Tan K.S.W. 2021. New insights into the interactions between Blastocystis, the gut microbiota, and host immunity. PLoS Pathogens 17(2): e1009253. https://doi.org/10.1371/journal.ppat.1009253
[14] Aykur M., Malatyalı E., Demirel F., Cömert-Koçak B., Gentekaki E., Tsaousis A.D., Dogruman-Al F. 2024. Blastocystis: a mysterious member of the gut microbiome. Microorganisms 12(3): 461. https://doi.org/10.3390/microorganisms12030461
[15] Wu Z., Mirza H., Tan K.S.W. 2014. Intra-subtype variation in entero adhesion accounts for differences in epithelial barrier disruption and is associated with metronidazole resistance in blastocystis subtype-7. PLoS Neglected Tropical Diseases 8: e2885. https://doi.org/10.1371/journal.pntd.0002885
[16] Taghipour A., Rayatdoost E., Bairami A., Bahadory S., Abdoli A. 2022. Are Blastocystis hominis and Cryptosporidium spp. playing a positive role in colorectal cancer risk? A systematic review and meta-analysis. Infectious Agents and Cancer 17(1): 32. https://doi.org/10.1186/s13027-022-00447-x
[17] Kodio A., Coulibaly D., Koné A.K., Konaté S., Doumbo S., Guindo A., Bittar F., Gouriet F., Raoult D., Thera M.A., Ranque S. 2019. Blastocystis colonization is associated with increased diversity and altered gut bacterial communities in healthy Malian children. Microorganisms 7(12): 649. https://doi.org/10.3390/microorganisms7120649
[18] Even G., Lokmer A., Rodrigues J., Audebert C., Viscogliosi E., Ségurel L., Chabé M. 2021. Changes in the human gut microbiota associated with colonization by Blastocystis sp. and Entamoeba spp. in non-industrialized populations. Frontiers in Cellular and Infection Microbiology 11: 533528. https://doi.org/10.3389/fcimb.2021.533528
[19] Yason J.A., Liang Y.R., Png C.W., Zhang Y., Tan K.S.W. 2019. Interactions between a pathogenic Blastocystis subtype and gut microbiota: in vitro and in vivo studies. Microbiome 7(1): 30. https://doi.org/10.1186/s40168-019-0644-3
[20] Rajamanikam A., Isa M.N.M., Samudi C., Devaraj S., Govind S.K. 2023. Gut bacteria influence Blastocystis sp. phenotypes and may trigger pathogenicity. PLoS Neglected Tropical Diseases 17(3): e0011170. https://doi.org/10.1371/journal.pntd.0011170
[21] Parfrey L.W., Walters W.A., Lauber C.L., Clemente J.C., Berg-Lyons D., Teiling C., Kodira C., Mohiuddin M., Brunelle J., Driscoll M., Fierer N., Gilbert J.A., Knight R. 2014. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Frontiers in Microbiology 5: 298. https://doi.org/10.3389/fmicb.2014.00298
[22] Roberts T., Ellis J., Harkness J., Marriott D., Stark D. 2014. Treatment failure in patients with chronic Blastocystis infection. Journal of Medical Microbiology 63(Pt 2): 252–257. https://doi.org/10.1099/jmm.0.065508-0
[23] Coyle C.M., Varughese J., Weiss L.M., Tanowitz H.B. 2012. Blastocystis: to treat or not to treat… Clinical Infectious Diseases 54(1): 105–110. https://doi.org/10.1093/cid/cir810
[24] Sekar U., Shanthi M. 2013. Blastocystis: Consensus of treatment and controversies. Tropical Parasitology 3(1): 35–39. https://doi.org/10.4103/2229-5070.113901
[25] Tsaousis A.D., Shaw D., Jirku K., Carmena D., Gentekaki E. 2025. Rethinking Blastocystis: ubiquity and cyclical abundance in the human gut. Trends in Parasitology 41(11): 954–958. https://doi.org/10.1016/j.pt.2025.08.009
[26] Olyaiee A., Sadeghi A., Yadegar A., Mirsamadi E.S., Mirjalali H. 2022. Gut microbiota shifting in irritable bowel syndrome: the mysterious role of Blastocystis sp. Frontiers in Medicine (Lausanne) 9: 890127. https://doi.org/10.3389/fmed.2022.890127
[27] Guangorena-Gómez J.O., Lozano-Ochoa I.I., Rivera-Medina I.L., Méndez-Hernández A., Espinosa-Fematt J.A., Muñoz-Yáñez C. 2022. Relationship among Blastocystis, the Firmicutes/ Bacteroidetes ratio and chronic stress in Mexican University students. Current Microbiology 79(3): 72. https://doi.org/10.1007/s00284-021-02756-7
[28] Beghini F., Pasolli E., Truong T.D., Putignani L., Cacciò S.M., Segata N. 2017. Large-scale comparative metagenomics of Blastocystis, a common member of the human gut microbiome. The ISME Journal 11(12): 2848–2863. https://doi.org/10.1038/ismej.2017.139
[29] Yañez C.M., Hernández A.M., Sandoval A.M., Domínguez M.A.M., Muñiz S.A.Z., Gómez J.O.G. 2021. Prevalence of Blastocystis and its association with Firmicutes/Bacteroidetes ratio in clinically healthy and metabolically ill subjects. BMC Microbiology 21(1): 339. https://doi.org/10.1186/s12866-021-02402-z
[30] Nourrisson C., Scanzi J., Pereira B., NkoudMongo C., Wawrzyniak I., Cian A., Viscogliosi E., Livrelli V., Delbac F., Dapoigny M., Poirier P. 2014. Blastocystis is associated with decrease of fecal microbiota protective bacteria: comparative analysis between patients with irritable bowel syndrome and control subjects. PLoS One 9(11): e111868. https://doi.org/10.1371/journal.pone.0111868
[31] Shirvani G., Fasihi-Harandi M., Raiesi O., Bazargan N., Zahedi M.J., Sharifi I., Kalantari-Khandani B., Nooshadokht M., Shabandoust H., Mohammadi M.A., Ebrahimipour M., Babaei Z. 2020. Prevalence and molecular subtyping of Blastocystis from patients with irritable bowel syndrome, inflammatory bowel disease and chronic urticaria in Iran. Acta Parasitologica 65(1): 90–96. https://doi.org/10.2478/s11686-019-00131-y
[32] Lee S., Portlock T., Le Chatelier E., Garcia-Guevara F., Clasen F., Oñate F.P., Pons N., Begum N., Harzandi A., Proffitt C., Rosario D., Vaga S., Park J., von Feilitzen K., Johansson F., Zhang C., Edwards L.A., Lombard V., Gauthier F., Steves C.J., Gomez-Cabrero D., Henrissat B., Lee D., Engstrand L., Shawcross D.L., Proctor G., Almeida M., Nielsen J., Mardinoglu A., Moyes D.L., Ehrlich S.D., Uhlen M., Shoaie S. 2024. Global compositional and functional states of the human gut microbiome in health and disease. Genome Research 34(6): 967–978. https://doi.org/10.1101/gr.278637.123
[33] Van Hul M., Cani P.D., Petitfils C., De Vos W.M., Tilg H., El-Omar E.M. 2024. What defines a healthy gut microbiome? Gut 73(11): 1893–1908. https://doi.org/10.1136/gutjnl-2024-333378
[34] Clemente J.C., Ursell L.K., Parfrey L.W., Knight R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148(6): 1258–1270. https://doi.org/10.1016/j.cell.2012.01.035
[35] Schloissnig S., Arumugam M., Sunagawa S., Mitreva M., Tap J., Zhu A., Waller A., Mende D.R., Kultima J.R., Martin J., Kota K., Sunyaev S.R., Weinstock G.M., Bork P. 2012. Genomic variation landscape of the human gut microbiome. Nature. 493(7430): 45–50. https://doi.org/10.1038/nature11711
[36] Shreiner A.B., Kao J.Y., Young V.B. 2015. The gut microbiome in health and in disease. Current Opinion in Gastroenterology 31(1): 69–75. https://doi.org/10.1097/MOG.0000000000000139
[37] Di Vincenzo F., Del Gaudio A., Petito V., Lopetuso L.R., Scaldaferri F. 2024. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Internal and Emergency Medicine 19(2): 275–293. https://doi.org/10.1007/s11739-023-03374-w
[38] Cahana I., Iraqi F.A. 2020. Impact of host genetics on gut microbiome: Take-home lessons from human and mouse studies. Animal Models and Experimental Medicine 3(3): 229–236. https://doi.org/10.1002/ame2.12134
[39] Gupta V.K., Paul S., Dutta C. 2017. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Frontiers in Microbiology 8: 1162. https://doi.org/10.3389/fmicb.2017.01162
[40] Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. 2011. Human nutrition, the gut microbiome and the immune system. Nature 474(7351): 327–336. https://doi.org/10.1038/nature10213
[41] Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R.N., Anokhin A.P., Heath A.C., Warner B., Reeder J., Kuczynski J., Caporaso J.G., Lozupone C.A., Lauber C., Clemente J.C., Knights D., Knight R., Gordon J.I. 2012. Human gut microbiome viewed across age and geography. Nature 486(7402): 222–227. https://doi.org/10.1038/nature11053
[42] Thursby E., Juge N. 2017. Introduction to the human gut microbiota. The Biochemical Journal 474(11): 1823–1836. https://doi.org/10.1042/BCJ20160510
[43] Hall A.B., Tolonen A.C., Xavier R.J. 2017. Human genetic variation and the gut microbiome in disease. Nature Reviews Genetic 18(11): 690–699. https://doi.org/10.1038/nrg.2017.63
[44] Deidda G., Biazzo M. 2021. Gut and brain: investigating physiological and pathological interactions between microbiota and brain to gain new therapeutic avenues for brain diseases. Frontiers in Neuroscience 15: 753915. https://doi.org/10.3389/fnins.2021.753915
[45] Vemuri R., Gundamaraju R., Shastri M.D., Shukla S.D., Kalpurath K., Ball M., Tristram S., Shankar E.M., Ahuja K., Eri R. 2018. Gut microbial changes, interactions, and their implications on human lifecycle: an ageing perspective. Biomed Research International 2018: 4178607. https://doi.org/10.1155/2018/4178607
[46] Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Nageshwar Reddy D. 2015. Role of the normal gut microbiota. World Journal of Gastroenterology 21(29): 8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787
[47] Zheng D., Liwinski T., Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Research 30(6): 492–506. https://doi.org/10.1038/s41422-020-0332-7
[48] Hills R.D. Jr., Pontefract B.A., Mishcon H.R., Black C.A., Sutton S.C., Theberge C.R. 2019. Gut microbiome: profound implications for diet and disease. Nutrients 11(7): 1613. https://doi.org/10.3390/nu11071613
[49] Zubeldia-Varela E., Barker-Tejeda T.C., Obeso D., Villaseñor A., Barber D., Pérez-Gordo M. 2022. Microbiome and allergy: new insights and perspectives. Journal of Investigational Allergology & Clinical Immunology 32(5): 327–344. https://doi.org/10.18176/jiaci.0852
[50] Gülden E., Wong F.S., Wen L. 2015. The gut microbiota and type 1 diabetes. Clinical Immunology 159(2): 143–153. https://doi.org/10.1016/j.clim.2015.05.013
[51] Jalanka-Tuovinen J., Salojärvi J., Salonen A., Immonen O., Garsed K., Kelly F.M., Zaitoun A., Palva A., Spiller R.C., de Vos W.M. 2014. Faecal microbiota composition and host-microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut 63(11): 1737–1745. https://doi.org/10.1136/gutjnl-2013-305994
[52] Perry R.J., Peng L., Barry N.A., Cline G.W., Zhang D., Cardone R.L., Petersen K.F., Kibbey R.G., Goodman A.L., Shulman G.I. 2016. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534(7606): 213–217. https://doi.org/10.1038/nature18309
[53] Hooper L.V., Macpherson A.J. 2010. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Reviews. Immunology 10(3): 159–169. https://doi.org/10.1038/nri2710
[54] Ley R.E., Peterson D.A., Gordon J.I. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4): 837–848. https://doi.org/10.1016/j.cell.2006.02.017
[55] David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., Biddinger S.B., Dutton R.J., Turnbaugh P.J. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484): 559–563. https://doi.org/10.1038/nature12820
[56] Ouwerkerk J.P., de Vos W.M., Belzer C. 2013. Glycobiome: bacteria and mucus at the epithelial interface. Best Practice & Research. Clinical Gastroenterology 27(1): 25–38. https://doi.org/10.1016/j.bpg.2013.03.001
[57] Li H., Limenitakis J.P, Fuhrer T., Geuking M.B., Lawson M.A., Wyss M., Brugiroux S., Keller I., Macpherson J.A., Rupp S., Stolp B., Stein J.V., Stecher B., Sauer U., McCoy K.D., Macpherson A.J. 2015. The outer mucus layer hosts a distinct intestinal microbial niche. Nature Communications 6: 8292. https://doi.org/10.1038/ncomms9292
[58] Arike L., Hansson G.C. 2016. The densely o-glycosylated MUC2 mucin protects the intestine and provides food for the commensal bacteria. Journal of Molecular Biology 428(16): 3221–3229. https://doi.org/10.1016/j.jmb.2016.02.010
[59] Bjedov I., Tenaillon O., Gérard B., Souza V., Denamur E., Radman M., Taddei F., Matic I. 2003. Stress-induced mutagenesis in bacteria. Science 300: 1404–1409. https://doi.org/10.1126/science.1082240
[60] Xu J., Mahowald M.A., Ley R.E., Lozupone C.A., Hamady M., Martens E.C., Henrissat B., Coutinho P.M., Minx P., Latreille P., Cordum H., Van Brunt A., Kim K., Fulton R.S., Fulton L.A., Clifton S.W., Wilson R.K., Knight R.D., Gordon J.I. 2007. Evolution of symbiotic bacteria in the distal human intestine. PLoS Biology 5(7): e156. https://doi.org/10.1371/journal.pbio.0050156
[61] Carbonero F., Benefiel A.C., Alizadeh-Ghamsari A.H., Gaskins H.R. 2012. Microbial pathways in colonic sulfur metabolism and links with health and disease. Frontiers in Physiology 3: 448. https://doi.org/10.3389/fphys.2012.00448
[62] Ridlon J.M., Kang D.J., Hylemon P.B., Bajaj J.S. 2014. Bile acids and the gut microbiome. Current Opinion in Gastroenterology 30(3): 332–338. https://doi.org/10.1097/MOG.0000000000000057
[63] Staley C., Weingarden A.R., Khoruts A., Sadowsky M.J. 2017. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Applied Microbiology and Biotechnology 101(1): 47–64. https://doi.org/10.1007/s00253-016-8006-6
[64] Hooper L.V., Littman D.R., Macpherson A.J. 2012. Interactions between the microbiota and the immune system. Science 336(6086):1268–1273. https://doi.org/10.1126/science.1223490
[65] Macpherson A.J., Gatto D., Sainsbury E., Harriman G.R., Hengartner H., Zinkernagel R.M. 2000. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288(5474): 2222–2226. https://doi.org/10.1126/science.288.5474.2222
[66] Macpherson A.J., Uhr T. 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303(5664): 1662–1665. https://doi.org/10.1126/science.1091334
[67] Cash H.L., Whitham C.V., Behrendt C.L., Hooper L.V. 2006. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313(5790): 1126–1130. https://doi.org/10.1126/science.1127119
[68] Rodríguez J.M., Murphy K., Stanton C., Ross R.P., Kober O.I., Juge N., Avershina E., Rudi K., Narbad A., Jenmalm M.C., Marchesi J.R., Collado M.C. 2015. The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease 26: 26050. https://doi.org/10.3402/mehd.v26.26050
[69] Biedermann L., Zeitz J., Mwinyi J., Sutter-Minder E., Rehman A., Ott S.J., Steurer-Stey C., Frei A., Frei P., Scharl M., Loessner M.J., Vavricka S.R., Fried M., Schreiber S., Schuppler M., Rogler G. 2013. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One 8(3): e59260. https://doi.org/10.1371/journal.pone.0059260
[70] Jiang H., Ling Z., Zhang Y., Mao H., Ma Z., Yin Y., Wang W., Tang W., Tan Z., Shi J., Li L., Ruan B. 2015. Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behavior and Immunity 48: 186–194. https://doi.org/10.1016/j.bbi.2015.03.016
[71] Tyakht A.V., Kostryukova E.S., Popenko A.S., Belenikin M.S., Pavlenko A.V., Larin A.K., Karpova I.Y., Selezneva O.V., Semashko T.A., Ospanova E.A., Babenko V.V., Maev I.V., Cheremushkin S.V., Kucheryavyy Y.A., Shcherbakov P.L., Grinevich V.B., Efimov O.I., Sas E.I., Abdulkhakov R.A., Abdulkhakov S.R., Lyalyukova E.A., Livzan M.A., Vlassov V.V., Sagdeev R.Z., Tsukanov V.V., Osipenko M.F., Kozlova I.V., Tkachev A.V., Sergienko V.I., Alexeev D.G., Govorun V.M. 2013. Human gut microbiota community structures in urban and rural populations in Russia. Nature Communication 4: 2469. https://doi.org/10.1038/ncomms3469
[72] Thompson R.C.A., Ash A. 2016. Molecular epidemiology of Giardia and Cryptosporidium infections. Infection Genetics and Evolution 40: 315–323. https://doi.org/10.1016/j.meegid.2015.09.028
[73] Dubik M., Pilecki B., Moeller J.B. 2022. Commensal intestinal Protozoa-underestimated members of the gut microbial community. Biology 11(12): 1742. https://doi.org/10.3390/biology11121742
[74] Garcia L.S. 2016. Dientamoeba fragilis, One of the neglected intestinal Protozoa. Journal of Clinical Microbiology 54(9): 2243–2250. https://doi.org/10.1128/JCM.00400-16
[75] Shasha D., Grupel D., Treigerman O., Prajgrod G., Paran Y., Hacham D., Ben-Ami R., Albukrek D., Zacay G. 2024. The clinical significance of Dientamoeba fragilis and Blastocystis in human stool-retrospective cohort study. Clinical Microbiology and Infection 30(1): 130–136. https://doi.org/10.1016/j.cmi.2023.09.003
[76] Billy V., Lhotská Z., Jirků M., Kadlecová O., Frgelecová L., Parfrey L.W., Pomajbíková K.J. 2021. Blastocystis colonization alters the gut microbiome and, in some cases, promotes faster recovery from induced colitis. Frontiers in Microbiology 12: 641483. https://doi.org/10.3389/fmicb.2021.641483
[77] Behboud S., Solhjoo K., Erfanian S., Pirestani M., Abdoli A. 2022. Alteration of gut bacteria composition among individuals with asymptomatic Blastocystis infection: a case-control study. Microbial Pathogenesis 169: 105639. https://doi.org/10.1016/j.micpath.2022.105639
[78] Nieves-Ramírez M.E., Partida-Rodríguez O., Laforest-Lapointe I., Reynolds L.A., Brown E.M., Valdez-Salazar A., Morán-Silva P., Rojas-Velázquez L., Morien E., Parfrey L.W., Jin M., Walter J., Torres J., Arrieta M.C., Ximénez-García C., Finlay B.B. 2018. Asymptomatic intestinal colonization with protist Blastocystis is strongly associated with distinct microbiome ecological patterns. mSystems 3(3): e00007–18. https://doi.org/10.1128/mSystems.00007-18
[79] Di Cristanziano V., Farowski F., Berrilli F., Santoro M., Di Cave D., Glé C., Daeumer M., Thielen A., Wirtz M., Kaiser R., Eberhardt K.A., Vehreschild M.J.G.T., D’Alfonso R. 2021. Analysis of human gut microbiota composition associated to the presence of commensal and pathogen microorganisms in Côte d’Ivoire. Microorganisms 9(8): 1763. https://doi.org/10.3390/microorganisms9081763
[80] Wojciech L., Png C.W., Koh E.Y., Kioh D.Y.Q,. Deng L., Wang Z., Wu L.Z., Hamidinia M., Tung D.W., Zhang W., Pettersson S., Chan E.C.Y., Zhang Y., Tan K.S., Gascoigne N.R. 2023. A tryptophan metabolite made by a gut microbiome eukaryote induces pro-inflammatory T cells. The EMBO Journal 42(21): e112963. https://doi.org/10.15252/embj.2022112963
[81] Deng L., Lee J.W.J., Tan K.S.W. 2022. Infection with pathogenic Blastocystis ST7 is associated with decreased bacterial diversity and altered gut microbiome profiles in diarrheal patients. Parasites & Vectors 15(1): 312. https://doi.org/10.1186/s13071-022-05435-z
[82] Deng L., Wojciech L., Png C.W., Kioh D.Y.Q., Gu Y., Aung T.T., Malleret B., Chan E.C.Y., Peng G., Zhang Y., Gascoigne N.R.J., Tan K.S.W. 2023. Colonization with two different Blastocystis subtypes in DSS-induced colitis mice is associated with strikingly different microbiome and pathological features. Theranostics 13(3): 1165–1179. https://doi.org/10.7150/thno.81583
[83] Coutinho C.M.L.M., Coutinho-Silva R., Zinkevich V., Pearce C.B., Ojcius D.M., Beech I. 2017. Sulphate-reducing bacteria from ulcerative colitis patients induce apoptosis of gastrointestinal epithelial cells. Microbial Pathogenesis 112: 126–134. https://doi.org/10.1016/j.micpath.2017.09.054
[84] Huang G., Zheng Y., Zhang N., Huang G., Zhang W., Li Q., Ren X. 2024. Desulfovibrio vulgaris caused gut inflammation and aggravated DSS-induced colitis in C57BL/6 mice model. Gut Pathogens 16(1): 39. https://doi.org/10.1186/s13099-024-00632-w
[85] Deng L., Tay H., Peng G., Lee J.W.J., Tan K.S.W. 2021. Prevalence and molecular subtyping of Blastocystis in patients with Clostridium difficile infection, Singapore. Parasites & Vectors 14(1): 277. https://doi.org/10.1186/s13071-021-04749-8
[86] Kesuma Y., Firmansyah A., Bardosono S., Sari I.P., Kurniawan A. 2019. Blastocystis ST-1 is associated with irritable bowel syndrome-diarrhoea (IBS-D) in Indonesian adolescences. Parasite Epidemiology Control 6: e00112. https://doi.org/10.1016/j.parepi.2019.e00112
[87] Mohamed A.M., Ahmed M.A., Ahmed S.A., Al-Semany S.A., Alghamdi S.S., Zaglool D.A. 2017. Predominance and association risk of Blastocystis hominis subtype I in colorectal cancer: a case control study. Infectious Agents and Cancer 12: 21. https://doi.org/10.1186/s13027-017-0131-z
[88] Defaye M., Nourrisson C., Baudu E., Lashermes A., Meynier M., Meleine M., Wawrzyniak I., Bonnin V., Barbier J., Chassaing B., Godfraind C., Gelot A., Barnich N., Ardid D., Bonnet M., Delbac F., Carvalho F.A., Poirier P. 2020. Fecal dysbiosis associated with colonic hypersensitivity and behavioral alterations in chronically Blastocystis-infected rats. Scientific Reports 10(1): 9146. https://doi.org/10.1038/s41598-020-66156-w
[89] Dalile B., Van Oudenhove L., Vervliet B., Verbeke K. 2019. The role of short-chain fatty acids in microbiota-gut-brain communication. Nature Reviews Gastroenterology & Hepatology 16(8): 461–478. https://doi.org/10.1038/s41575-019-0157-3
[90] Wang L., Alammar N., Singh R., Nanavati J., Song Y., Chaudhary R., Mullin G.E. 2020. Gut microbial dysbiosis in the irritable bowel syndrome: a systematic review and meta-analysis of case-control studies. Journal of the Academy of Nutrition and Dietetics 120(4): 565–586. https://doi.org/10.1016/j.jand.2019.05.015
[91] Yañez C.M., Hernández A.M., Sandoval A.M., Domínguez M.A.M., Muñiz S.A.Z., Gómez J.O.G. 2021. Prevalence of Blastocystis and its association with Firmicutes/Bacteroidetes ratio in clinically healthy and metabolically ill subjects. BMC Microbiology 21(1): 339. https://doi.org/10.1186/s12866-021-02402-z
[92] Vega L., Herrera G., Muñoz M., Patarroyo M.A., Ramírez J.D. 2020. Occurrence of Blastocystis in patients with Clostridioides difficile infection. Pathogens 9(4): 283. https://doi.org/10.3390/pathogens9040283
[93] Azimirad M., Gol S.M.A., Javanmard E., Mirjalali H., Yadegar A., Aghdaei H.A., Shahrokh S., Balaii H., Sadeghi A., Zali M.R. 2021. Blastocystis and Clostridioides difficile: evidence for a synergistic role in colonization among IBD patients with emphasis on ulcerative colitis. Turkish Journal of Gastroenterology 32(6): 500–507. https://doi.org/10.5152/tjg.2021.19644
[94] Audebert C., Even G., Cian A., Blastocystis Investigation Group, Loywick A., Merlin S., Viscogliosi E., Chabé M. 2016. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Scientific Reports 6: 25255. https://doi.org/10.1038/srep25255
[95] Kodio A., Coulibaly D., Koné A.K., Konaté S., Doumbo S., Guindo A., Bittar F., Gouriet F., Raoult D., Thera M.A., Ranque S. 2019. Blastocystis colonization is associated with increased diversity and altered gut bacterial communities in healthy Malian children. Microorganisms 7(12): 649. https://doi.org/10.3390/microorganisms7120649
[96] Alzate J.F., Toro-Londoño M., Cabarcas F., Garcia-Montoya G., Galvan-Diaz A. 2020. Contrasting microbiota profiles observed in children carrying either Blastocystis spp. or the commensal amoebas Entamoeba coli or Endolimax nana. Scientific Reports 10(1): 15354. https://doi.org/10.1038/s41598-020-72286-y
[97] Even G., Lokmer A., Rodrigues J., Audebert C., Viscogliosi E., Ségurel L., Chabé M. 2021. Changes in the human gut microbiota associated with colonization by Blastocystis sp. and Entamoeba spp. in non-industrialized populations. Frontiers in Cellular and Infection Microbiology 11: 533528. https://doi.org/10.3389/fcimb.2021.533528
[98] Castañeda S., Tomiak J., Andersen L.O., Acosta C.P., Vasquez-A L.R., Stensvold C.R., Ramírez J.D. 2025. Impact of Blastocystis carriage and colonization intensity on gut microbiota composition in a non-westernized rural population from Colombia. PLoS Neglected Tropical Diseases 19(5): e0013111. https://doi.org/10.1371/journal.pntd.0013111
[99] Loh G., Blaut M. 2012. Role of commensal gut bacteria in inflammatory bowel diseases. Gut Microbes 3(6): 544–555. https://doi.org/10.4161/gmic.22156
[100] Bermingham E.N., Maclean P., Thomas D.G., Cave N.J., Young W.2017. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ 5: e3019. https://doi.org/10.7717/peerj.3019
[101] Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermúdez-Humarán L.G., Gratadoux J.J., Blugeon S., Bridonneau C., Furet J.P., Corthier G., Grangette C., Vasquez N., Pochart P., Trugnan G., Thomas G., Blottière H.M., Doré J., Marteau P., Seksik P., Langella P. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the United Stades of America 105(43): 16731–16736. https://doi.org/10.1073/pnas.0804812105
[102] Hu Y., Chen J., Xu Y., Zhou H., Huang P., Ma Y., Gao M., Cheng S., Zhou H., Lv Z. 2020. Alterations of gut microbiome and metabolite profiling in mice infected by Schistosoma japonicum. Frontiers in Immunology 11: 569727. https://doi.org/10.3389/fimmu.2020.569727
[103] Parker B.J., Wearsch P.A., Veloo A.C.M., Rodriguez-Palacios A. 2020. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Frontiers in Immunology 11: 906. https://doi.org/10.3389/fimmu.2020.00906
[104] Jensen A.N., Mejer H., Mølbak L., Langkjær M,. Jensen T.K., Angen Ø., Martinussen T., Klitgaard K., Baggesen D.L., Thamsborg S.M., Roepstorff A. 2011. The effect of a diet with fructan-rich chicory roots on intestinal helminths and microbiota with special focus on Bifidobacteria and Campylobacter in piglets around weaning. Animal 5(6): 851–860. https://doi.org/10.1017/S175173111000251X
[105] Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M., de Vos W.M., Cani P.D. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United Stades of America 110(22): 9066–9071. https://doi.org/10.1073/pnas.1219451110
[106] Deng L., Wojciech L., Png C.W., Kioh Y.Q.D., Ng G.C., Chan E.C.Y., Zhang Y., Gascoigne N.R.J., Tan K.S.W. 2023. Colonization with ubiquitous protist Blastocystis ST1 ameliorates DSS-induced colitis and promotes beneficial microbiota and immune outcomes. NPJ Biofilms and Microbiomes 9(1): 22. https://doi.org/10.1038/s41522-023-00389-1
[107] Tito R.Y., Chaffron S., Caenepeel C., Lima-Mendez G., Wang J., Vieira-Silva S., Falony G., Hildebrand F., Darzi Y., Rymenans L., Verspecht C., Bork P., Vermeire S., Joossens M., Raes J. 2019. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut 68(7): 1180–1189. https://doi.org/10.1136/gutjnl-2018-316106
[108] Huang L.S., Yeh Y.M., Chiu S.F., Huang P.J., Chu L.J., Huang C.Y., Cheng F.W., Chen L.C., Lin H.C., Shih Y.W., Lin W.N., Huang K.Y. 2024. Intestinal microbiota analysis of different Blastocystis subtypes and Blastocystis-negative individuals in Taiwan. Biomedical Journal 47(4): 100661. https://doi.org/10.1016/j.bj.2023.100661
[109] Cani P.D., Depommier C., Derrien M., Everard A., de Vos W.M. 2022. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews in Gastroenterology and Hepatology 19(10): 625-637. https://doi.org/10.1038/s41575-022-00631-9 . Erratum in: Nature Reviews in Gastroenterology and Hepatology 19(10): 682. https://doi.org/10.1038/s41575-022-00650-6
[110] Nourrisson C., Scanzi J., Brunet J., Delbac F., Dapoigny M., Poirier P. 2021. Prokaryotic and eukaryotic fecal microbiota in irritable bowel syndrome patients and healthy individuals colonized with Blastocystis. Frontiers in Microbiology 12: 713347. https://doi.org/10.3389/fmicb.2021.713347
[111] Mason K.L., Erb Downward J.R., Mason K.D., Falkowski N.R., Eaton K.A., Kao J.Y., Young V.B., Huffnagle G.B. 2012. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy. Infection and Immunity 80(10): 3371–3380. https://doi.org/10.1128/IAI.00449-12
[112] Pérez J.C. 2021. The interplay between gut bacteria and the yeast Candida albicans. Gut Microbes 13(1): 1979877. https://doi.org/10.1080/19490976.2021.1979877
[113] Richard M.L., Sokol H. 2019. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nature Reviews in Gastroenterology and Hepatology 16: 331–345. https://doi.org/10.1038/s41575-019-0121-2
[114] Deng L., Wojciech L., Png C.W., Koh E.Y., Aung T.T., Kioh D.Y.Q, Chan E.C.Y., Malleret B., Zhang Y., Peng G., Gascoigne N.R.J., Tan K.S.W. 2022. Experimental colonization with Blastocystis ST4 is associated with protective immune responses and modulation of gut microbiome in a DSS-induced colitis mouse model. Cellular and Molecular Life Sciences 79(5): 245. https://doi.org/10.1007/s00018-022-04271-9
[115] Deng L., Tan K.S.W. 2022. Interactions between Blastocystis subtype ST4 and gut microbiota in vitro. Parasites & Vectors 15(1): 80. https://doi.org/10.1186/s13071-022-05194-x
[116] Chakaroun R.M., Olsson L.M., Bäckhed F. 2023. The potential of tailoring the gut microbiome to prevent and treat cardiometabolic disease. Nature Reviews in Cardiology 20(4): 217–235. https://doi.org/10.1038/s41569-022-00771-0
[117] Asnicar F., Berry S.E., Valdes A.M., Nguyen L.H., Piccinno G., Drew D.A., Leeming E., Gibson R., Le Roy C., Khatib H.A., Francis L., Mazidi M., Mompeo O., Valles-Colomer M., Tett A., Beghini F., Dubois L., Bazzani D., Thomas A.M., Mirzayi C., Khleborodova A., Oh S., Hine R., Bonnett C., Capdevila J., Danzanvilliers S., Giordano F., Geistlinger L., Waldron L., Davies R., Hadjigeorgiou G., Wolf J., Ordovás J.M., Gardner C., Franks P.W., Chan A.T., Huttenhower C., Spector T.D., Segata N. 2021. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nature Medicine 27(2): 321–332. https://doi.org/10.1038/s41591-020-01183-8
[118] Piperni E., Nguyen L.H., Manghi P., Kim H., Pasolli E., Andreu-Sánchez S., Arrè A., Bermingham K.M., Blanco-Míguez A., Manara S., Valles-Colomer M., Bakker E., Busonero F., Davies R., Fiorillo E., Giordano F., Hadjigeorgiou G., Leeming E.R., Lobina M., Masala M., Maschio A., McIver L.J., Pala M., Pitzalis M., Wolf J., Fu J., Zhernakova A., Cacciò S.M., Cucca F., Berry S.E., Ercolini D., Chan A.T., Huttenhower C., Spector T.D., Segata N., Asnicar F. 2024. Intestinal Blastocystis is linked to healthier diets and more favorable cardiometabolic outcomes in 56,989 individuals from 32 countries. Cell 187(17): 4554–4570.e18. https://doi.org/10.1016/j.cell.2024.06.018
[119] Kim M.J., Lee Y.J., Kim T.J., Won E.J. 2021. Gut microbiome profiles in colonizations with the enteric Protozoa Blastocystis in Korean populations. Microorganisms 10(1): 34. https://doi.org/10.3390/microorganisms10010034
[120] Stensvold C.R., Sørland B.A., Berg R.P.K.D., Andersen L.O., van der Giezen M., Bowtell J.L., El-Badry A.A., Belkessa S., Kurt Ö., Nielsen H.V. 2022. Stool microbiota diversity analysis of Blastocystis-positive and Blastocystis-negative individuals. Microorganisms 10(2): 326. https://doi.org/10.3390/microorganisms10020326
[121] Jeffery I.B., Cotter P.D., Scanlan P.D. 2022. Collateral damage in the human gut microbiome – Blastocystis is significantly less prevalent in an antibiotic-treated adult population compared to non-antibiotic treated controls. Frontiers in Cellular and Infection Microbiology 12: 822475. https://doi.org/10.3389/fcimb.2022.822475
[122] Lind A.L., McDonald N.A., Gerrick E.R., Bhatt A.S., Pollard K.S. 2025. Contiguous and complete assemblies of Blastocystis gut microbiome-associated protists reveal evolutionary diversification to host ecology. bioRxiv Biology [Preprint] 15:2023. 11.20.567959. https://doi.org/10.1101/2023.11.20.567959. Update in: Genome Research 35(6): 1377–1390. https://doi.org/10.1101/gr.279080.124
[123] McCutcheon J.P., Moran N.A. 2012. Extreme genome reduction in symbiotic bacteria. Nature Reviews in Microbiology 10: 13–26. https://doi.org/10.1038/nrmicro2670
[124] Leckenby A., Hall N. 2015. Genomic changes during evolution of animal parasitism in eukaryotes. Current Opinion in Genetics and Development 35: 86–92. https://doi.org/10.1016/j.gde.2015.11.001
[125] Stevens C.E., Hume I.D. 1995. Comparative physiology of the vertebrate digestive system, 2nd ed. Cambridge University Press, Cambridge.