Determination of the anti-protozoal activity of medicinal agents using the phenomenon of plaque formation by Acanthamoeba spp.

Authors

  • Volodymyr Shyrobokov Bogomolets National Medical University, Kyiv, Ukraine
  • Vadym Poniatovskyi Bogomolets National Medical University, Kyiv, Ukraine
  • Valeriia Poniatovska Bogomolets National Medical University, Kyiv, Ukraine
  • Anastasiia Romanchyshyna Bogomolets National Medical University, Kyiv, Ukraine
  • Rusłan Sałamatin Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland; Department of Microbiology and Parasitology, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland

DOI:

https://doi.org/10.17420/ap7001.522

Keywords:

Acanthamoeba, anti-protozoal activity, plaque formation, Cellulosimicrobium, screening method

Abstract

Representatives of the genus Acanthamoeba are among the most widespread protists in the environment. They have a ubiquitous distribution and can sometimes cause quite serious pathologies in humans. The treatment ofp rotozoal infections caused by free-living amoebae is currently limited and often unsuccessful. In the presented investigation, amebicidal activity was determined against both the trophozoites and cysts of Acanthamoeba spp., which were isolated during the microbiological examination of environmental objects. The inhibitory activity of drugs in vitro was determined using the authors’ proposed method, which is based on the plaque formation phenomenon: this is initiated by free-living amoebae when cultured in agar containing the bacteria Cellulosimicrobium sp. strain bent-1. Based on a series of experimental studies, the paper proposes a reliable and inexpensive method for determining the anti-protozoal activity of medicinal agents, which will significantly complement the current screening method system when studying existing drugs, or new drugs during their development stage.

References

Visvesvara G.S., Moura H., Schuster F.L. 2007. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunology Medical Microbiology 50(1): 1–26. https://doi.org/10.1111/j.1574-695X.2007.00232.x

Marciano-Cabral F., Cabral G. 2003. Acanthamoeba spp. as agents of disease in humans. Clinical Microbiology Reviews 16(2): 273–307. https://doi.org/10.1128/CMR.16.2.273-307.2003

Siddiqui R., Khan N.A. 2012. Biology and pathogenesis of Acanthamoeba. Parasites & Vectors 5(1): 6. https://doi.org/10.1186/1756-3305-5-6

Zhang Y., Xu X., Wei Z., Cao K., Zhang Z., Liang Q. 2023. The global epidemiology and clinical diagnosis of Acanthamoeba keratitis. Journal of Infection and Public Health 16(6): 841–852. https://doi.org/10.1016/j.jiph.2023.03.020

Maycock N.J.R., Jayaswal R. 2016. Update on Acanthamoeba keratitis. Cornea 35(5): 713–720. https://doi.org/10.1097/ICO.0000000000000804

Molmeret M., Horn M., Wagner M., Santic M., Abu Kwaik Y. 2005. Amoebae as training grounds for intracellular bacterial pathogens. Applied and Environmental Microbiology 71(1): 20–28. https://doi.org/10.1128/AEM.71.1.20-28.2005

Wang Y., Jiang L., Zhao Y., Ju X., Wang L., Jin L., Fine R.D., Li M. 2023. Biological characteristics and pathogenicity of Acanthamoeba. Frontiers in Microbiology 14: 1147077. https://doi.org/10.3389/fmicb.2023.1147077

Fuerst P.A. 2023. The status of molecular analyses of isolates of Acanthamoeba maintained by International Culture Collections. Microorganisms 11(2): 295. https://doi.org/10.3390/microorganisms11020295

Elsheikha H.M., Siddiqui R., Khan N.A. 2020. Drug discovery against Acanthamoeba infections: present knowledge and unmet needs. Pathogens 9(5): 405. https://doi.org/10.3390/pathogens9050405

Lorenzo-Morales J., Khan N.A., Walochnik J. 2015. An update on Acanthamoeba keratitis: diagnosis pathogenesis and treatment. Parasite 22: 10. https://doi.org/10.1051/parasite/2015010

Debnath A., Tunac J.B., Silva-Olivares A., Galindo- Gómez S., Shibayama M., McKerrow J.H. 2014. In vitro efficacy of corifungin against Acanthamoeba castellanii trophozoites and cysts. Antimicrobial Agents and Chemotherapy 58(3): 1523–1528. https://doi.org/10.1128/AAC.02254-13

Noradilah S.A., Kamel A.G.M., Anisah N., Yusof S., Noraina A.R., Norazah A. 2012. In vitro sensitivity testing of Acanthamoeba clinical isolates from patients with keratitis against polyhexamethylene biguanide (PHMB) and chlorhexidine. Sains Malaysiana 41(5): 569–572.

Buck S.L., Rosenthal R.A. 1996. A quantitative method to evaluate neutralizer toxicity against Acanthamoeba castellanii. Applied and Environmental Microbiology 62(9): 3521–3526. https://doi.org/10.1128/aem.62.9.3521-3526.1996

Gee Hoon, S.T., Ghani, M.K.A., Nordin, A., Megat Hashim, P.N., Suboh, Y., Rahim, N.A. 2011. Susceptibility of Acanthamoeba species isolated from environmental specimens to chlorhexidine, propamidine isethionate, gentamicin and chloramphenicol: an in-vitro study in Malaysia. International Medical Journal 18(4): 325–328.

Carter R.F. 1969. Sensitivity to amphotericin B of a Naegleria sp. isolated from a case of primary amoebic meningoencephalitis. Journal of Clinical Pathology 22(4): 470–474. https://doi.org/10.1136/jcp.22.4.470

Ortega-Rivas A., Padrón J.M., Valladares B., Elsheikha H.M. 2016. Acanthamoeba castellanii : a new high-throughput method for drug screening in vitro. Acta Tropica 164 95–99. https://doi.org/10.1016/j.actatropica.2016.09.006

Martín-Escolano R., Yiangou L., Kazana E., Robinson G.K., Michaelis M., Tsaousis A.D. 2021. Repurposing in vitro approaches for screening antiparasitic drugs against the brain-eating amoeba Naegleria fowleri. International Journal for Parasitology: Drugs and Drug Resistance 17 204– 212. https://doi.org/10.1016/j.ijpddr.2021.10.003

Shyrobokov V., Poniatovskyi V., Chobotar A., Sałamatin R. 2020. Applying of bacteria Cellulosimicrobium sp. for cultivation protozoa of genus Acanthamoeba. Annals of Parasitology 66(1): 61–67. https://doi.org/10.17420/ap6601.238

Shyrobokov V., Poniatovskyi V., Chobotar A., Sałamatin R. 2020. Morphological, physiological and genetic characteristics of protozoa of genus Acanthamoeba, isolated from different deposit of bentonite in Ukraine. Annals of Parasitology 66(1): 69–75. https://doi.org/10.17420/ap6601.239

Voloŝuk O.M. 2020. Antimìkrobna ta antivìrusna aktivnìstʹ spoluk adamantan (alkìl, cikloalkìl) pohìdnih amìnopropanolu-2 [doctoral thesis]. Kyiv, 120 p.

Taravaud A., Loiseau P.M., Pomel S. 2017. In vitro evaluation of antimicrobial agents on Acanthamoeba sp. and evidence of a natural resilience to amphotericin B. International Journal for Parasitology: Drugs and Drug Resistance 7(3): 328– 336. https://doi.org/10.1016/j.ijpddr.2017.09.002

Georgopoulos A., Linnau K.F., Buxbaum A., Coste C., Ramirez de Los Santos M.A., Shabpar A., Graninger W. 2001. Efficacy of macrolides vs. metronidazole against Entamoeba histolytica clinical isolates. Wiener Klinische Wochenschrift 113(15/16): 593–596.

Adams M. 1961. Bakteriofagi. (Ed. A.S. Kriviskij). Izdatelʹstvo Inostrannoj Literatury, Moscov, 521 p. (in Russian)

Golʹdfarb D.M. 1961. Bakteriofagiâ. (Ed. V.D. Timakov). Medgiz, Moscow, 299 p. (in Russian)

Hudzicki J. 2009. Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology. https://asm.org/getattachment/2594ce 26-bd44-47f6-8287-0657aa9185ad/Kirby-Bauer- Disk-Diffusion-Susceptibility-Test-Protocol-pdf.pdf

Stefanov O.V. (Ed.). 2001. Doklìnìčnì doslìdžennâ lìkarsʹkih zasobìv. Avicenna, Kyiv, 527 p. (in Ukrainian)

Balouiri M., Sadiki M., Ibnsouda S.K. 2016. Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis 6(2): 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Downloads

Published

2024-06-27

How to Cite

Shyrobokov, V., Poniatovskyi, V., Poniatovska, V., Romanchyshyna, A., & Sałamatin, R. (2024). Determination of the anti-protozoal activity of medicinal agents using the phenomenon of plaque formation by Acanthamoeba spp. Annals of Parasitology, 70, 00–00. https://doi.org/10.17420/ap7001.522

Issue

Section

Original papers