Determination of the anti-protozoal activity of medicinal agents using the phenomenon of plaque formation by Acanthamoeba spp.
DOI:
https://doi.org/10.17420/ap7001.522Keywords:
Acanthamoeba, anti-protozoal activity, plaque formation, Cellulosimicrobium, screening methodAbstract
Representatives of the genus Acanthamoeba are among the most widespread protists in the environment. They have a ubiquitous distribution and can sometimes cause quite serious pathologies in humans. The treatment ofp rotozoal infections caused by free-living amoebae is currently limited and often unsuccessful. In the presented investigation, amebicidal activity was determined against both the trophozoites and cysts of Acanthamoeba spp., which were isolated during the microbiological examination of environmental objects. The inhibitory activity of drugs in vitro was determined using the authors’ proposed method, which is based on the plaque formation phenomenon: this is initiated by free-living amoebae when cultured in agar containing the bacteria Cellulosimicrobium sp. strain bent-1. Based on a series of experimental studies, the paper proposes a reliable and inexpensive method for determining the anti-protozoal activity of medicinal agents, which will significantly complement the current screening method system when studying existing drugs, or new drugs during their development stage.
References
Visvesvara G.S., Moura H., Schuster F.L. 2007. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunology Medical Microbiology 50(1): 1–26. https://doi.org/10.1111/j.1574-695X.2007.00232.x
Marciano-Cabral F., Cabral G. 2003. Acanthamoeba spp. as agents of disease in humans. Clinical Microbiology Reviews 16(2): 273–307. https://doi.org/10.1128/CMR.16.2.273-307.2003
Siddiqui R., Khan N.A. 2012. Biology and pathogenesis of Acanthamoeba. Parasites & Vectors 5(1): 6. https://doi.org/10.1186/1756-3305-5-6
Zhang Y., Xu X., Wei Z., Cao K., Zhang Z., Liang Q. 2023. The global epidemiology and clinical diagnosis of Acanthamoeba keratitis. Journal of Infection and Public Health 16(6): 841–852. https://doi.org/10.1016/j.jiph.2023.03.020
Maycock N.J.R., Jayaswal R. 2016. Update on Acanthamoeba keratitis. Cornea 35(5): 713–720. https://doi.org/10.1097/ICO.0000000000000804
Molmeret M., Horn M., Wagner M., Santic M., Abu Kwaik Y. 2005. Amoebae as training grounds for intracellular bacterial pathogens. Applied and Environmental Microbiology 71(1): 20–28. https://doi.org/10.1128/AEM.71.1.20-28.2005
Wang Y., Jiang L., Zhao Y., Ju X., Wang L., Jin L., Fine R.D., Li M. 2023. Biological characteristics and pathogenicity of Acanthamoeba. Frontiers in Microbiology 14: 1147077. https://doi.org/10.3389/fmicb.2023.1147077
Fuerst P.A. 2023. The status of molecular analyses of isolates of Acanthamoeba maintained by International Culture Collections. Microorganisms 11(2): 295. https://doi.org/10.3390/microorganisms11020295
Elsheikha H.M., Siddiqui R., Khan N.A. 2020. Drug discovery against Acanthamoeba infections: present knowledge and unmet needs. Pathogens 9(5): 405. https://doi.org/10.3390/pathogens9050405
Lorenzo-Morales J., Khan N.A., Walochnik J. 2015. An update on Acanthamoeba keratitis: diagnosis pathogenesis and treatment. Parasite 22: 10. https://doi.org/10.1051/parasite/2015010
Debnath A., Tunac J.B., Silva-Olivares A., Galindo- Gómez S., Shibayama M., McKerrow J.H. 2014. In vitro efficacy of corifungin against Acanthamoeba castellanii trophozoites and cysts. Antimicrobial Agents and Chemotherapy 58(3): 1523–1528. https://doi.org/10.1128/AAC.02254-13
Noradilah S.A., Kamel A.G.M., Anisah N., Yusof S., Noraina A.R., Norazah A. 2012. In vitro sensitivity testing of Acanthamoeba clinical isolates from patients with keratitis against polyhexamethylene biguanide (PHMB) and chlorhexidine. Sains Malaysiana 41(5): 569–572.
Buck S.L., Rosenthal R.A. 1996. A quantitative method to evaluate neutralizer toxicity against Acanthamoeba castellanii. Applied and Environmental Microbiology 62(9): 3521–3526. https://doi.org/10.1128/aem.62.9.3521-3526.1996
Gee Hoon, S.T., Ghani, M.K.A., Nordin, A., Megat Hashim, P.N., Suboh, Y., Rahim, N.A. 2011. Susceptibility of Acanthamoeba species isolated from environmental specimens to chlorhexidine, propamidine isethionate, gentamicin and chloramphenicol: an in-vitro study in Malaysia. International Medical Journal 18(4): 325–328.
Carter R.F. 1969. Sensitivity to amphotericin B of a Naegleria sp. isolated from a case of primary amoebic meningoencephalitis. Journal of Clinical Pathology 22(4): 470–474. https://doi.org/10.1136/jcp.22.4.470
Ortega-Rivas A., Padrón J.M., Valladares B., Elsheikha H.M. 2016. Acanthamoeba castellanii : a new high-throughput method for drug screening in vitro. Acta Tropica 164 95–99. https://doi.org/10.1016/j.actatropica.2016.09.006
Martín-Escolano R., Yiangou L., Kazana E., Robinson G.K., Michaelis M., Tsaousis A.D. 2021. Repurposing in vitro approaches for screening antiparasitic drugs against the brain-eating amoeba Naegleria fowleri. International Journal for Parasitology: Drugs and Drug Resistance 17 204– 212. https://doi.org/10.1016/j.ijpddr.2021.10.003
Shyrobokov V., Poniatovskyi V., Chobotar A., Sałamatin R. 2020. Applying of bacteria Cellulosimicrobium sp. for cultivation protozoa of genus Acanthamoeba. Annals of Parasitology 66(1): 61–67. https://doi.org/10.17420/ap6601.238
Shyrobokov V., Poniatovskyi V., Chobotar A., Sałamatin R. 2020. Morphological, physiological and genetic characteristics of protozoa of genus Acanthamoeba, isolated from different deposit of bentonite in Ukraine. Annals of Parasitology 66(1): 69–75. https://doi.org/10.17420/ap6601.239
Voloŝuk O.M. 2020. Antimìkrobna ta antivìrusna aktivnìstʹ spoluk adamantan (alkìl, cikloalkìl) pohìdnih amìnopropanolu-2 [doctoral thesis]. Kyiv, 120 p.
Taravaud A., Loiseau P.M., Pomel S. 2017. In vitro evaluation of antimicrobial agents on Acanthamoeba sp. and evidence of a natural resilience to amphotericin B. International Journal for Parasitology: Drugs and Drug Resistance 7(3): 328– 336. https://doi.org/10.1016/j.ijpddr.2017.09.002
Georgopoulos A., Linnau K.F., Buxbaum A., Coste C., Ramirez de Los Santos M.A., Shabpar A., Graninger W. 2001. Efficacy of macrolides vs. metronidazole against Entamoeba histolytica clinical isolates. Wiener Klinische Wochenschrift 113(15/16): 593–596.
Adams M. 1961. Bakteriofagi. (Ed. A.S. Kriviskij). Izdatelʹstvo Inostrannoj Literatury, Moscov, 521 p. (in Russian)
Golʹdfarb D.M. 1961. Bakteriofagiâ. (Ed. V.D. Timakov). Medgiz, Moscow, 299 p. (in Russian)
Hudzicki J. 2009. Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology. https://asm.org/getattachment/2594ce 26-bd44-47f6-8287-0657aa9185ad/Kirby-Bauer- Disk-Diffusion-Susceptibility-Test-Protocol-pdf.pdf
Stefanov O.V. (Ed.). 2001. Doklìnìčnì doslìdžennâ lìkarsʹkih zasobìv. Avicenna, Kyiv, 527 p. (in Ukrainian)
Balouiri M., Sadiki M., Ibnsouda S.K. 2016. Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis 6(2): 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Downloads
Published
Versions
- 2024-07-29 (2)
- 2024-06-27 (1)